

Altamaha Regional Water Planning Council Meeting September 10, 2019

Meeting Agenda

Council Meeting Agenda

Council Meeting Altamaha Regional Water Council Draft Agenda - September 10, 2019

Objectives:

1) Provide an Overview of Power Generation and Energy Sector Forecasting for Regional Water Planning

2) Learn about Local Energy Providers in the Region

3) Tour and Learn about Water Conservation and Sustainability Practices at Plant Hatch

9:45 - 10:00 a.m. Registration

10:00 - 10:15 a.m. Welcome and Introductions

Approve meeting minutes from January 31, 2019 Council Meeting

Approve meeting agenda

10:15 - 11:15 a.m. Power Generation and Energy Sector Forecasting for Regional Water Planning - Bill Davis,

CDM Smith

11:15 - 11:30 p.m. Water Conservation and Sustainability Practices at Plant Hatch - Plant Hatch

Representative

11:30 - 12:00 p.m. Lunch

12:00 - 12:45 p.m. Council Business Meeting

12:45 - 1:00 p.m. Public Comments/Local Elected Official Comments

Wrap Up

1:00 p.m. Adjourn Public Portion of Meeting

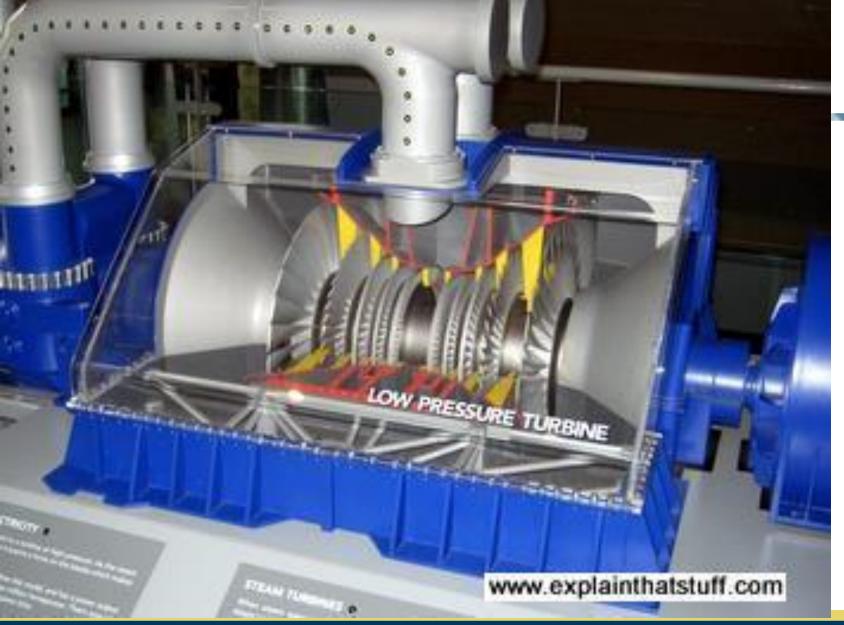
1:00 - 2:00 p.m. Tour of Plant Hatch (seating is limited to Council Members)

Power Generation and Energy Sector Forecasting for Regional Water Planning

Energy Discussion Outline

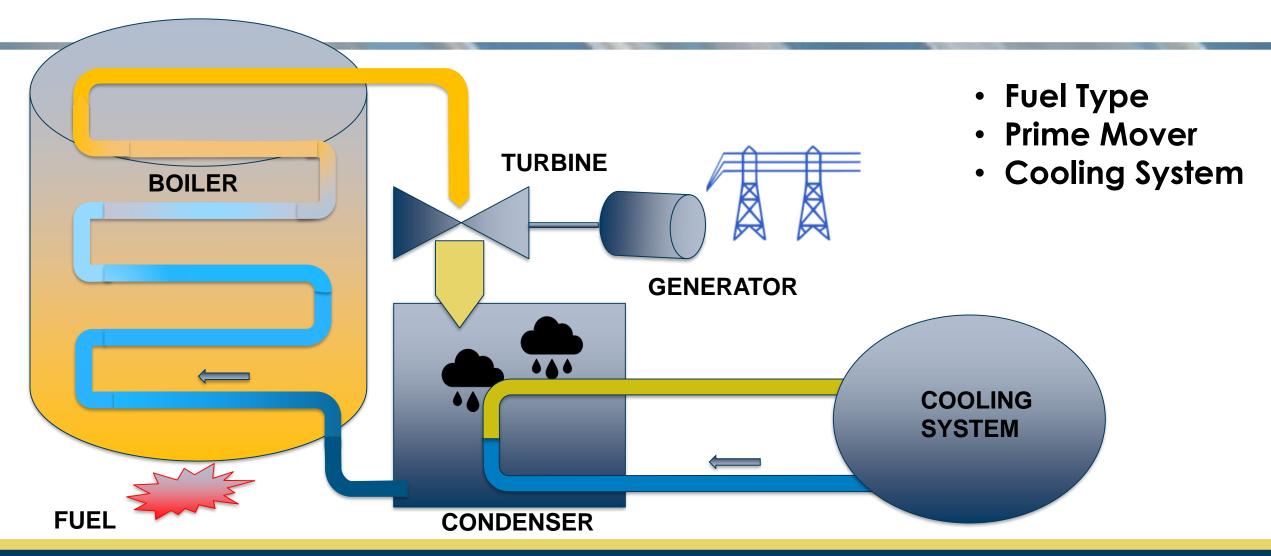
- How electricity is generated
- How water is used in generating electricity
- How electricity is transported
- What is the forecast for Georgia's future

Thermoelectric Power Plant



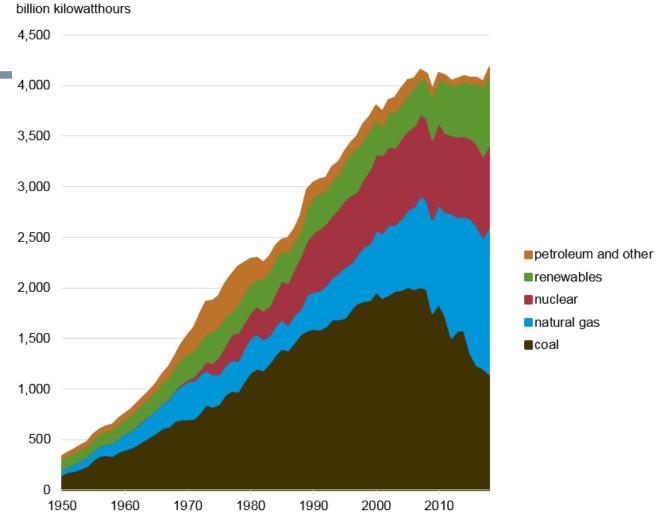
Terminology

- Voltage (Volts) an electrical force
- Current (Amps) a steady flow of electrons
- Power (Watts) = voltage (V) times current (A)
- Kilowatt (kW) = 1,000 Watts
- Energy (kWh) = power (kW) times time (hour)



Steam Turbine (Source: Explain That Stuff)

Thermoelectric Power Overview

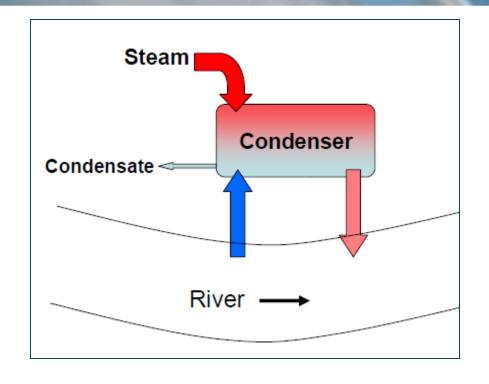


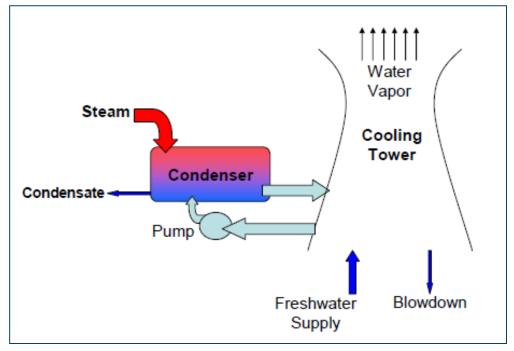
More Terminology

- Generator converts mechanical movement into electricity, opposite of an electric motor
- Generating Capacity the maximum electric output of a generator
- Nameplate Capacity maximum output designated by manufacturer
- Net Generation electricity generated minus the electricity used to operate the power plant
- Capacity Factor (percent) ratio of actual output to maximum output during a specific period of time

U.S. electricity generation by major energy source, 1950–2018

Note: Electricity generation from utility-scale facilities. Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 7.2a, March 2019


Fuel Types


	Thermoelectric Power Generation	Non-Thermo- electric Power Generation
Non-renewable	Fossil FuelsCoalCrude OilPetroleumNatural GasNuclear	
Renewable	Biomass from plants	Hydropower Solar Wind Geothermal

Types of Cooling Systems

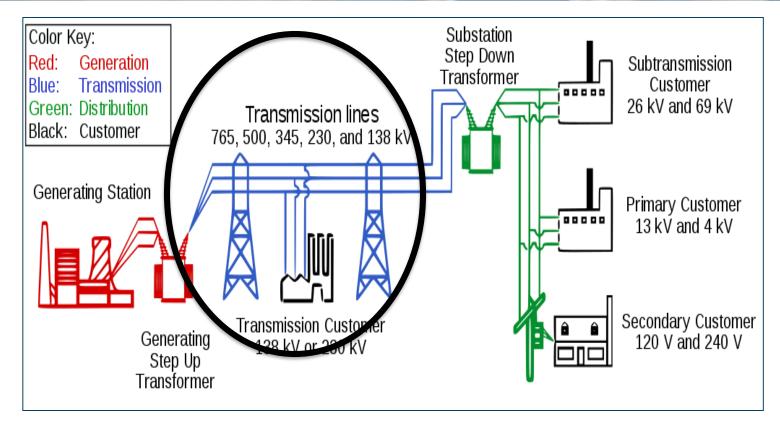
Withdrawal = Consumption + Return

Consumption = Withdrawal - Return

Open-Loop (Once-through) Cooling System

Closed-Loop Cooling System

Source: ENERGY DEMANDS ON WATER RESOURCES, DOE 2006



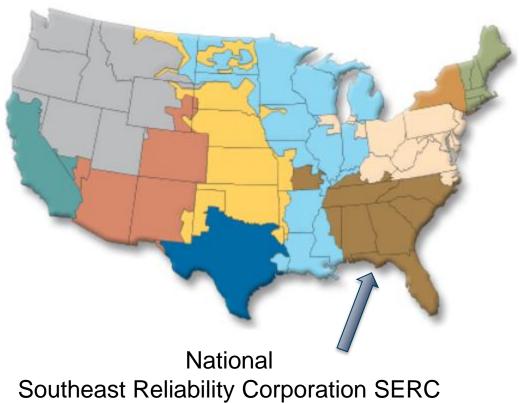
Water Use by Generation Combination

POWER GENERATION COMBINATION	WATER WITHDRAWALS (Gal/MWh)	WATER CONSUMPTION (Gal/MWh)
Fossil Fuel/Biomass, Steam Turbine, Once-Through Cooling	41,005	0
Fossil Fuel/Biomass, Steam Turbine, Cooling Tower	1,153	567
Fossil Fuel/Biomass, Gas (Combustion) Turbine	0	0
Natural Gas, Combined-Cycle, Cooling Tower	225	198
Nuclear, Steam Turbine, Cooling Tower	1,372	880

The Grid - Transmission

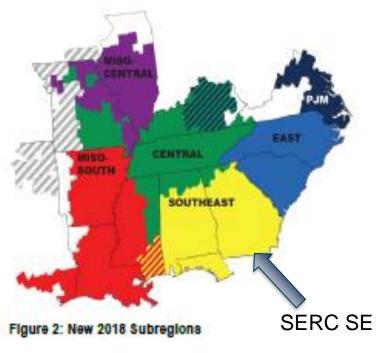
http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf https://commons.wikimedia.org/w/index.php?curid=5577847

All power stations are connected through a transmission network


Power stations "feed the grid"

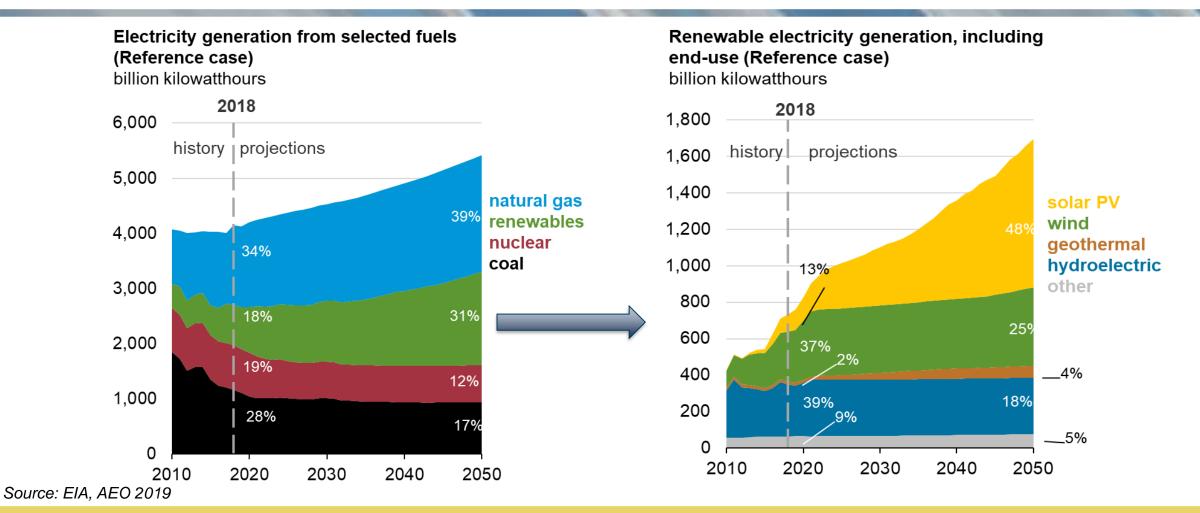
Power moves through the grid to the demand

- Baseload stations
- Peak load stations



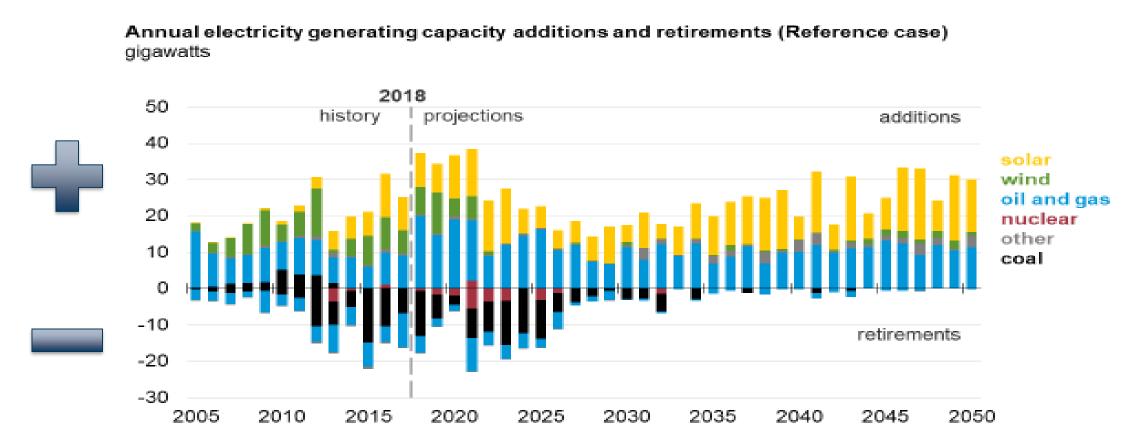
The Grid – Power Pools

Southeast Electric Regions

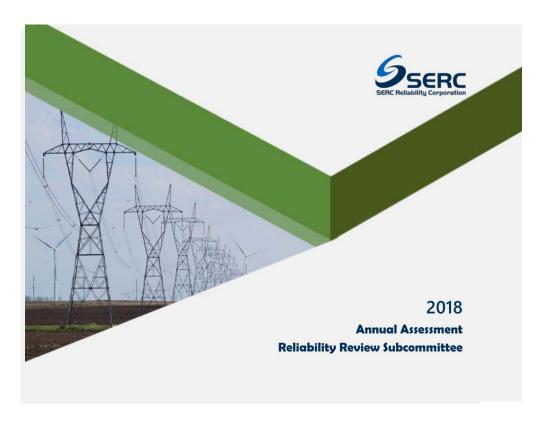

Regional

Sub-Regional

Sources: FERC (2019), SERC RRS Annual Report (2018)



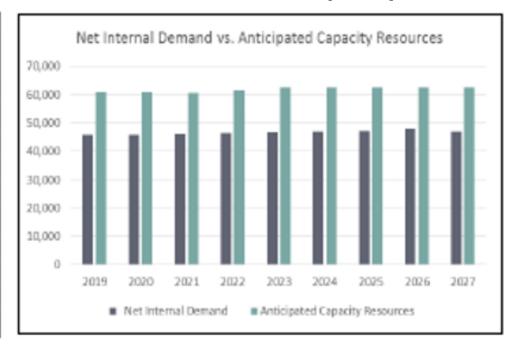
NATIONALLY: Electricity generation from natural gas and renewables increases, and the shares of nuclear and coal generation decrease


Expected Requirements for New Generating Capacity will be met by Renewables and Natural Gas

Source: EIA, AEO 2019

SERC Southeast Sub-Region

- SERC Southeast Subregion consists of the following Planning Coordinators
 - Georgia Transmission Corp
 - Municipal Electric Authority of GA
 - PowerSouth Energy Cooperative
 - Southern Company
- SERC Reliability Review
 Subcommittee (RRS) Annual Report
 2018

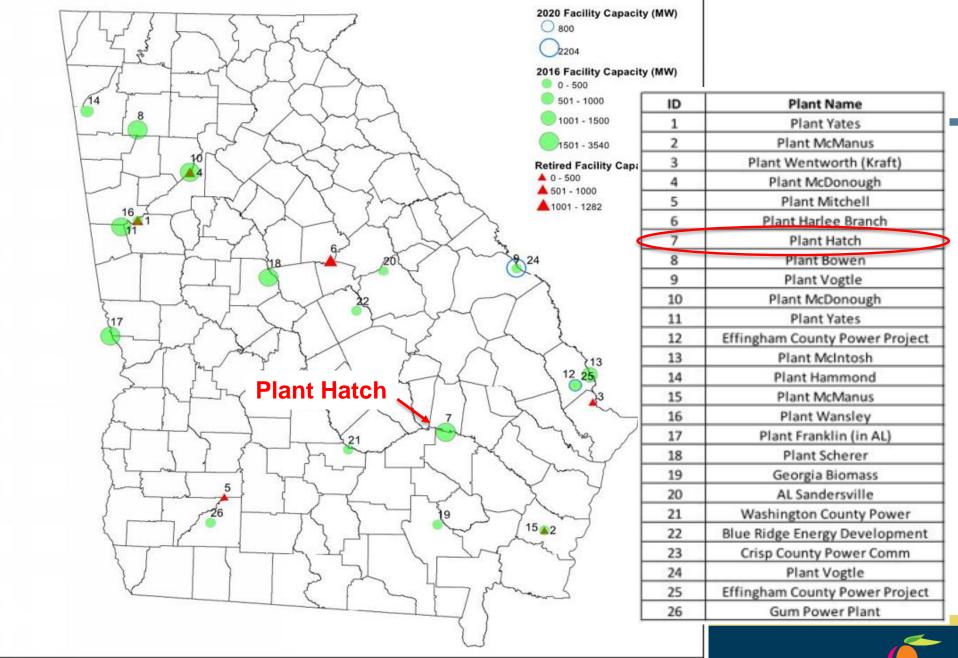

SERC RRS Annual Report 2018 Highlights

- Progress continues on Georgia Power's Vogtle nuclear expansion project (~2,200 MW).
- Despite low load growth, SERC SE entities continue to enhance and modernize the transmission system in response to the changing resource mix and system flows.

SERC SE Current Summer Peak Generation

Existing On-Peak Generation (Summer)					
Generation Type		Peak Season Capacity			
		MW	Percent		
Biomass		188	0.30		
Cost		18,979	30.74		
Gas		30,095	48.74		
Hydro	Hydro		5.33		
Nuclear	Nuclear		9.42		
Oil		961	1.56		
Other		113	0.18		
Pumped Storage	Pumped Storage		2.64		
Sun		668	1.08		
Wind		0	0.00		

SERC SE Projected Annual Generation and Capacity



Power Generating Facilities in Georgia

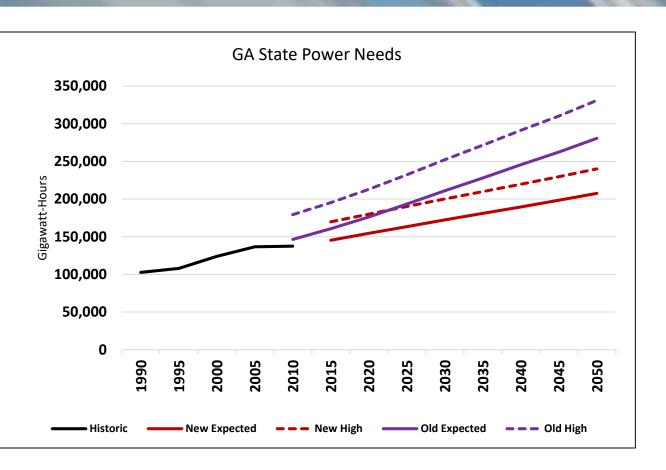
(2017 Regional

Water Plan Update)

EPD Georgia Power Generation Forecast

2009 Forecast

- 2007 EIA & EPD data
- 2008 Population projections
- 2007 EIA & SERC Outlook


2016 Forecast

- 2015 EIA & EPD data
- 2015 Population projections
- 2015 EIA & SERC Outlook

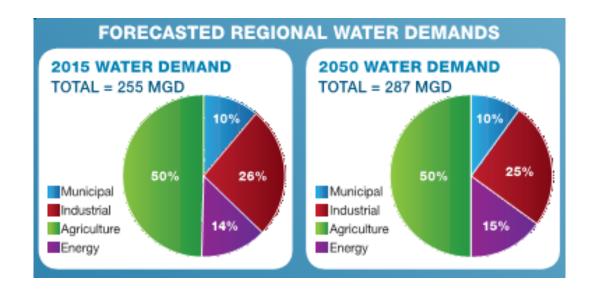
- **Step 1**. Estimate future power need from population projections
- **Step 2**. Inventory current generation capacity by generating configuration
- **Step 3**. Estimate future generation capacity needed to meet future power need by generating configuration
- **Step 4**. Estimate future water withdrawal and consumption by generating configuration
- **Step 5**. Geographically distribute future water demand to rivers and streams by facility location and generating configuration

Forecasting Power Need

POWER GENERATION COMBINATION	MAXIMUM CAPACITY
Fossil Fuel/Biomass, Steam Turbine, Once-Through Cooling	85%
Fossil Fuel/Biomass, Steam Turbine, Cooling Tower	85%
Fossil Fuel/Biomass, Gas (Combustion) Turbine	15%
Natural Gas, Combined-Cycle, Cooling Tower	50%
Nuclear, Steam Turbine, Cooling Tower	93%

Statewide Forecast: Withdrawals in MGD

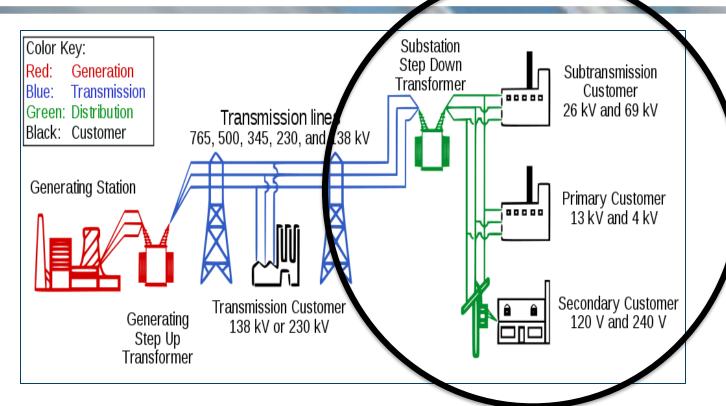
Power Generation Combination	2015	2020	2025	2030	2035	2040	2045	2050
Fossil Fuel/Biomass, Steam Turbine, Once-Through Cooling	1,529	380	420	438	456	478	490	490
Fossil Fuel/Biomass, Steam Turbine, Cooling Tower	124	192	192	195	205	215	226	243
Fossil Fuel/Biomass, Gas (Combustion) Turbine	0	0	0	0	0	0	0	0
Natural Gas, Combined-Cycle, Cooling Tower	17	20	22	23	24	25	26	28
Nuclear, Steam Turbine, Cooling Tower	124	192	192	195	205	215	226	243
Hydropower	119,609	119,609	119,609	119,609	119,609	119,609	119,609	119,609
Added Capacity	0	0	0	8	8	8	13	17
TOTAL	121,428	120,337	120,393	120,430	120,466	120,507	120,540	120,562
Without Hydropower	1,819	728	784	820	856	898	931	953


Statewide Forecast: Consumption in MGD

Power Generation Combination	2015	2020	2025	2030	2035	2040	2045	2050
Fossil Fuel/Biomass, Steam Turbine, Once-Through Cooling	0	0	0	0	0	0	0	0
Fossil Fuel/Biomass, Steam Turbine, Cooling Tower	73	67	74	77	80	84	86	86
Fossil Fuel/Biomass, Gas (Combustion) Turbine	0	0	0	0	0	0	0	0
Natural Gas, Combined-Cycle, Cooling Tower	15	17	19	20	21	22	23	24
Nuclear, Steam Turbine, Cooling Tower	80	123	123	126	133	139	147	158
Hydropower	0	0	0	0	0	0	0	0
Added Capacity	0	0	0	4	4	5	7	9
TOTAL	168	207	216	227	239	250	263	278

Forecast of Energy Water Demand: Altamaha

Altamaha	2015	2020	2025	2030	2035	2040	2045	2050
Withdrawals MGD	54	54	54	55	57	60	63	68
Consumption MGD	35	34	34	35	37	39	41	44



The Local Energy/Water Nexus

How Power Gets to You from the Grid

http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf https://commons.wikimedia.org/w/index.php?curid=5577847 Local power utilities:

Take power from theGrid

- Step it down to safeand usable voltage
- Distribute power to customers

Energy Management Corporations (EMCs)

- Move power from the Grid to End User
- Provide Customer Service
- Maintain Local Infrastructure
- Customer Billing
- Promote Energy Conservation
 - Energy Efficiency
 - Energy Savings
 - Water Savings

About Us Careers Investors News Conto

EMCs OF GEORGIA

Altamaha EMC	GreyStone Power Corporation	Rayle EMC
Amicalola EMC	Habersham EMC	Satilla REMC
Canoochee EMC	Hart EMC	Sawnee EMC
Carroll EMC	Irwin EMC	Slash Pine EMC
Central Georgia EMC	Jackson EMC	Snapping Shoals EMC
Coastal Electric Cooperative	Jefferson Energy Cooperative	Southern Rivers Energy
Cobb EMC	Little Ocmulgee EMC	Sumter EMC
Colquitt EMC	Middle Georgia EMC	Three Notch EMC
Coweta-Fayette EMC	Mitchell EMC	Tri-County EMC
Diverse Power	Ocmulgee EMC	Upson EMC
Excelsior EMC	Oconee EMC	Walton EMC
Flint Energies	Okefenoke REMC	Washington EMC
Grady EMC	Planters EMC	

https://opc.com/emc-relationships/

The Energy/Water Nexus

- It Takes Water to Produce Energy
- It Takes Energy to Treat and Deliver Water

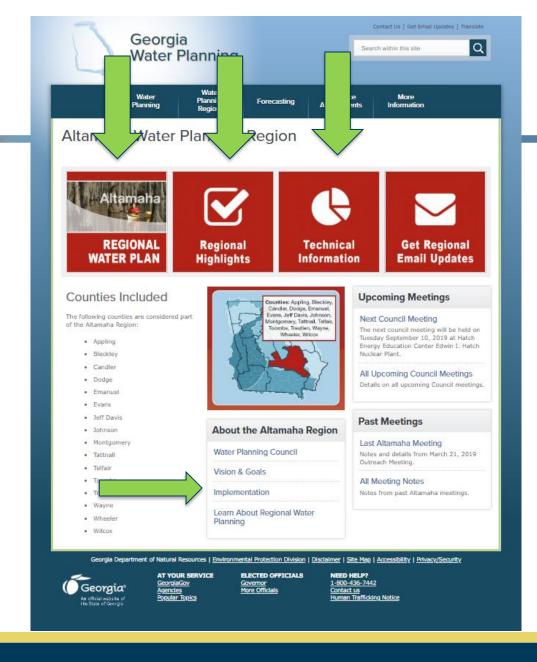
"An average kWh of electricity in the U.S. used or consumed 41.6 gallons of water in 2009." *Burning Our Rivers: The Water Footprint of Electricity, 2009.*

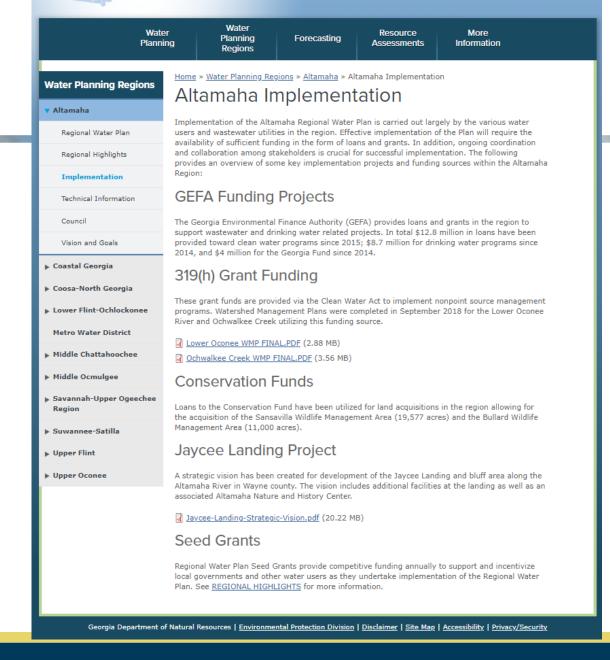
"At least 520 million Megawatt hours (MWh) of electricity per year is required to move, treat and heat water each year in the United States—comparable to 13% of total U.S. electricity consumption." *The Carbon Footprint of Water, 2009.*

- Using Energy Efficiently Saves Water
- Using Water Efficiently Saves Energy

Water Conservation and Sustainability Practices at Plant Hatch

Lunch


Council Business


Council Business

- Approve meeting summary from January 31, 2019 Council Meeting
- Regional Council Website Updates
- Survey for Potential Topics of Interest
- EPD Seed Grant Announcement
- Outreach Opportunities

Survey – Potential Topics of Interest

- Helps guide future agenda planning
- Survey Monkey link sent out on July 25, 2019

Water Management Strategies

Drought Response Planning

Population Projections

Agricultural Water Demand Forecasting

Interaction of Groundwater and Surface Water

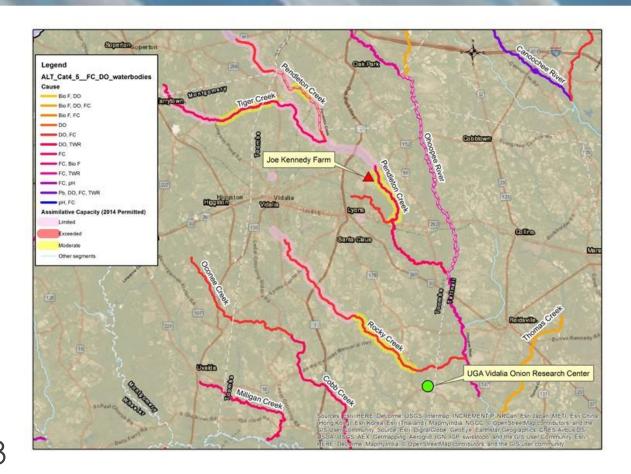
Federal & State agency initiatives

Recreational uses and opportunities

Suggested topic

https://www.surveymonkey.com/r/9NDWV6H

Upcoming Regional Water Plan Seed Grant Fiscal Year 2020 Grant Period


- Announcement released on July 31, 2019
- Eligible recipients of Seed Grant funds can include local, regional and State government, regional commissions, resource conservation and development councils, local schools, State college and universities, and State agencies
- Must attend a pre-application meeting by October 17, 2019
- Applications must be postmarked by October 31, 2019.

https://epd.georgia.gov/regional-water-plan-seed-grant-funds

Regional Water Plan Seed Grant Planning – Potential Topic

- Nonpoint source management & best management practices to address agricultural/urban runoff
 - Presence of impaired waters and segments with limited assimilative capacity
- Identifying specific growers in Toombs County area to further develop proposal
- MPs under consideration include NPSA-1, NPSA-2, NPSA-4 and TMDL-3

Continuing Support to RWP Councils

Outreach Activities

- Identify potential opportunities to share information regarding the updated RWP with key implementing actors in settings outside of the Council meetings
- Continued coordination with young farmers and identification of opportunities to reach large target audience while engaging Council members: http://gaaged.org/youngfarmers/
- Georgia Young Farmers Convention January 31& February 1, 2020
- Other outreach opportunities?

Public Comments/Local Elected Official Comments

Thank You!

Questions? Comments? Need More Information?

Honourdm@cdmsmith.com Jennifer.Welte@dnr.ga.gov

