Middle Chattahoochee Reservoirs Harmful algae, Invasive plants, Nutrients, and Turbidity

Wesley Gerrin, Duncan Elkins and Susan Wilde

Warnell School of Forestry & Natural Resources UNIVERSITY OF GEORGIA

Project Objectives

- Investigate interactions between nutrient loading, sediment transport, and planktonic harmful algal blooms
- Monitor for toxic epiphytic cyanobacteria
 Aetokthonos hydrillicola on dense submerged
 aquatic vegetation, especially Hydrilla verticillata

Cyanobacteria "Blue-green algae" Hepatotoxins "liver toxins"

> Chronic health effects at lower concentrations, Acute at high concentration

Cyanobacteria Impacts

Economic Losses

Adverse Health Effects

Loss of Biodiversity

Cyanobacteria Link (2005)

- Cyanobacteria (or blue-green algae) are photosynthetic bacterial species that can produce liver and nerve toxins
- Previously undescribed cyanobacterial species
 - (Wilde et al. 2005, 2014)
 - Aetokthonos hydrillicola
- Grows as an epiphyte on hydrilla and other aquatic plants in all AVM sites

Aetokthonos hydrillicola "eagle killer living on hydrilla"

"Avian" Vacuolar Myelinopathy 2019

Neurological impairment

• Eagle with drooping wings

Unresponsive coot

SAV Sampling 2018

- Hydrilla infestations (5 locations) Harding
- No Hydrilla detected in Oliver and Goat Rock
- Aetokthonos hydrillicola was not detected on any of the samples

Water Column Position --- Thermocline

Lake Goat Rock

Water Column Position --- Thermocline

6.0

92

28.0

6.5

94

Lake Oliver

W-

Water Column Position --- Thermocline

GA Power Ambient Water Quality Monitoring 2000-2017 (quarterly)

YSI Sonde Chlorophyll

Surface Chlorophyll readings can be confounded by sunlight

Sensor measures fluorescence of algae

Non photochemical quenching Algae fluoresce less under bright sunlight Linkage of major anthropogenic and climatic environmental drivers of ecosystem change to their impacts on CyanoHAB potentials.

"Higher temperatures coupled with elevated P concentrations frequently yielded growth rates of toxic Microcystis cells which exceeded all other treatments and populations."

1

Davis, et al. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725.

UGA Extension Soil & Water La Nutrient & Harmful Algal Bloom Screening; Farm ponds, Urban detention ponds, Recreational Lakes

Hydrilla infestations can support filamentous algal mats, provide nutrients for benthic algae upon decay

Common benthic, endophytic & epiphytic cyanobacteria genera that can produce toxins:

- Anabaena
- Lyngbya
- Nostoc
- Oscillatoria/ Planktothrix
- Phormidium

Hydrilla can produce clear water phase

Hydrilla grows well even...

In Southeastern man-made lakes with

Fluctuating water depth Shoreline exposed during drought High erosion during storm events

Turbidity? Can prevent hydrilla growth if early spring inflows are intense

But.. Can grow under low light intensity "Sticky" leaves attract phosphorus laden clay particles Clear water column but providing TP source to epiphytic cyanobacteria.

Factors Affecting Surface Runoff

- Land Use
- Proximity to Streams
- Proximity to Ponds/Wetlands
- Soil Permeability
- Soil Erodability
- Slope
- Floodplain

7 Factors, 3 points each

	st s
James 23	. ta
- again	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/	~ \

niverine Zone	Indilational Lone	Lacusti me Zone			
Narrow, channelized basin	Broader, deeper basin	Broad, deep, lake-like basin			
Relatively high flow velocities	Reduced flow velocities	• Little flow velocities			
• High suspended solids, turbidity, low light availability, photic zone less than mixing zone	 Reduced suspended solids, less turbid- ity, light availability increased 	• Relatively clear, light more available at depth, photic zone greater than mixing zone			
 Nutrient supply by advection, relatively high nutrients 	Adjective nutrient supply reduced	 Nutrient supply by internal recycling, relatively low nutrients 			
 Light-limited primary production 	 Primary production relatively high 	 Nutrient-limited primary production 			
Cell losses primarily by sedimentation	 Cell losses by sedimentation and graz- ing 	Cell losses primarily by grazing			
Organic matter supply primarily allochthonous	 Intermediate between allochthonous and autochthonous organic matter sources 	 Organic matter supply primarily autochthonous 			
More eutrophic	Intermediate	More oligotrophic			

Figure 10–1. Diagram of an idealized reservoir showing longitudinal zonation and environmental factors controlling light and nutrient availability for phytoplankton production, algal productivity and standing crop, organic matter supply, and trophic status in an idealized reservoir (modified from Kimmel and others, 1990, figure 6.1).

USGS WaterWatch

Upstream Forests Predict Treatment Costs

(Ernst, et al, 2004)

Loss of Forest & Wetland Acres 2001-2011

		Class in 2011							
		Developed,	Developed,	Developed,	Developed,				
		High	Med.	Low	Open	Cultivated	Pasture/	Grassland/	Grand
		Intensity	Intensity	Intensity	Space	Crops	Нау	Herb.	Total
001	Evergreen Forest	632	2,122	5,110	6,754	185	770	50,846	66,418
	Mixed Forest	53	186	442	669	53	61	5,920	7,384
2	Deciduous Forest	716	2,401	5,815	8,543	119	425	11,852	29,870
lass ir	Woody Wetlands	4	54	133	290	24	6	371	882
	Em. Herb. Wetlands	0	4	8	15	4	1	25	57
C	Grand Total	1,405	4,767	11,508	16,271	386	1,262	69,013	104,612

 \sim

2044

~34,000 Acres Developed

Conservation vs Restoration

Conservation Priority Index (CPI)

- 3 points for Forested Land Cover

Restoration Priority Index (RPI)

- 3 points for Agricultural Land
- 2 points for Grassland

(Same Soil, Water, and Topographic Factors)

2011 Class	Percent
Open Water	2.7%
Developed, Open Space	6.2%
Developed, Low Intensity	3.6%
Developed, Medium Intensity	1.1%
Developed High Intensity	0.5%
Barren Land (Rock/Sand/Clay)	0.3%
Deciduous Forest	27.1%
Evergreen Forest	25.7%
Mixed Forest	3.9%
Shrub/Scrub	9.2%
Grassland/Herbaceous	5.5%
Pasture/Hay	7.9%
Cultivated Crops	1.9%
Woody Wetlands	4.1%
Emergent Herbaceous Wetlands	0.3%

Currently ~57% Forested ~78% "Natural"

Further Research Possibilities

- Would the model be valid at higher Chlorophyll-a concentrations (>5 μg/L)?
- Could we use sensor data as a surrogate for more expensive laboratory analysis?
- Investigate areas within each reservoir at risk for Aetokthonos hydrillicola growth
- Test water quality model with historical GA Power data
- Watershed HAB risk analysis using 2016 landcover data