# Georgia EPD Updates – Groundwater Resource Assessment

#### Christine Voudy, Georgia EPD



#### Water Planning Regions and Georgia's Aquifers



Select aquifers were prioritized for assessment.



## **Coastal Georgia Aquifers**







# **Upper Floridan Potentiometric Surface**



Base from U.S. Geological Survey 1:100,000 and 1:250,000-scale data

B. May and September 1998



15 KILOMETERS

**USGS SIR 2006-5058** 

#### Coastal Groundwater Use History

#### • <u>1960s and 1970s</u>

- Concerns about saltwater intrusion near Savannah and in Brunswick.
- A saltwater wedge found on northern end of Hilton Head Island.
- Eastern end of Bull Island Some wells had higher salinity levels.
- Saltwater from deeply buried brines was entering the Floridan aquifer in Brunswick, Ga.
- <u>1980s and Early 1990s</u>
  - South Carolina DHEC and Georgia EPD begin discussions on Floridan Aquifer use.
  - Initial restrictions on withdrawals in Chatham County implemented



# **Coastal Groundwater Use History**

- <u>1995 April 1997</u> Development of and Release of the Interim Strategy for Managing Salt-water Intrusion in the Upper Floridan Aquifer in Coastal Georgia (Interim Strategy).
  - Impacted 24 Coastal Counties
  - Imposed caps on groundwater use in Glynn and Chatham Counties, and portions of Bryan and Effingham Counties to avoid worsening the rate of saltwater intrusion.
  - Reduction of groundwater use in Chatham County by at least 10 mgd by December
    2005 through conservation and switching to surface water use.
  - Develop information needed to assist Georgia stakeholders with development and implementation of a final strategy that will acceptably address saltwater intrusion and encroachment problems along Georgia's coast.
    - Promote water conservation
    - Develop comprehensive water supply plans
    - Develop expanded scientific studies



#### Interim Strategy for Managing Saltwater Intrusion

#### Coastal Area divided into 3 subareas:

- <u>Northern area</u> Limited additional withdrawals
- <u>Central area</u>:
- Chatham and portions of Bryan and Effingham Co.
  - Withdrawals reduced by 10 mgd by Dec. 2005.
  - No new withdrawals without associated reductions.
- Glynn County No additional withdrawals.
- Other counties in Central area Some limited increases would be allowed (up to 15 mgd).
- <u>Southern area</u> Limited additional withdrawals
- All three subareas
  - Inactive groundwater permits will be canceled.
  - No new permits for golf course irrigation or noncontact cooling water, where alternate sources exist.
  - Total withdrawal increases would be limited to 36 mgd.



### Coastal Sound Science Initiative (CSSI)

#### • CSSI established by 1997 Interim Strategy.

- \$18 million effort:
  - \$11,258,000 State of Georgia
    \$1,000,000 State of South Carolina
  - \$1,750,000 USGS
    \$500,000 State of Florida
  - \$200,000 Glynn County
    \$3,260,415 Paper Industries in Coastal area
- Technical Advisory Committee established
  - Included representatives from Georgia EPD, SCDHEC, USGS, and other Georgia stakeholders.
  - Gathered additional scientific data, undertook extensive hydrological modeling and had input on any initiatives and regulatory actions that would be a result of the CSSI.
- June 2006 Coastal Georgia Water & Wastewater Permitting Plan for Managing Salt-Water Intrusion (CPP)
  - Replaced the Interim Strategy.
  - Based on the findings of the CSSI.



#### How and Where is Saltwater Entering the Floridan Aquifer

- Where is saltwater entering the Aquifer:
  - T-shaped plume Brunswick
    - Saltwater entering aquifer through fractures.
  - Hilton Head Island area:
    - Saltwater is entering aquifer along the northern shore of Hilton Head Island, Pinckney Island, and Colleton River.
    - Saltwater is entering the Floridan aquifer through downward leakance through the confining layer where confining unit is thin or absent.









USGS Scientific Investigations Report 2006-5058

#### Coastal Georgia Water & Wastewater Permitting Plan for Managing Salt-Water Intrusion



# CSSI Model



- CSSI model refined from the SHE model
  - Finer grid spacing around Hilton Head
  - Model was calibrated for steady state and transient conditions.
    - Model was calibrated against 2007 chloride contours provided by SCDHEC.
    - Model closely matched historical measurements of plume movement.
    - GA EPD and SCDHEC approved the model for use in the CSSI.
  - Baseline withdrawals:
    - Savannah Area 69 mgd
    - Hilton Head Island 9 mgd



## Initial CSSI Model Simulations

#### Historical Withdrawals in Savannah Area Only

#### Historical Withdrawals on Hilton Head Island Only

Georgia



- 2A Maintain historical withdrawals in Savannah area with no withdrawals on Hilton Head
- 2B Maintain historical withdrawals on Hilton Head with no withdrawals in Savannah area.

\*\* Neither simulation extended as far inland as the simulated initial plume (2007), so both contribute to the inland extent of the plume.

#### CSSI – Simulate Aquifer Management Scenarios



#### **No Reduction of Withdrawals**

No Reduction of Savannah Area Withdrawals and 50% Reduction of Withdrawals on Hilton Head Island



50% Reduction of Savannah Area Withdrawals and No Reduction of Withdrawals on Hilton Head Island



50% Reduction of Withdrawals in the Savannah Area and on Hilton Head Island



#### Conclusions of CSSI model simulations

- Groundwater withdrawals in both the Savannah and Hilton Head areas contributed toward the inland extent of the saltwater plume.
- Salt-water plumes would continue to exist well into the future even if all groundwater withdrawals were eliminated.
- Reducing groundwater withdrawals from the aquifer, even by large amounts, would not eliminate salt-water intrusion into the aquifer.



#### CSSI Findings - How Fast is Saltwater Traveling?

- Hilton Head Island area:
  - Since mid 1960s, the saltwater plume has moved about 2 miles south/southwest.
  - If year 2000 pumping rates are maintained plume will move ~130 feet per year.
  - Offshore investigations indicate some saltwater has migrated into the Floridan aquifer in the area 7-10 miles northeast of Tybee Island.
- Brunswick, Glynn County area:
  - Monitoring data indicate plume at Brunswick is stable and is not moving.

\*\* Modeling shows that increases/decreases in pumping from the Upper Floridan in or near the Savannah/Hilton Head areas will change the potentiometric gradient in these areas and thus change saltwater intrusion velocities.



#### 2006 Sub-Regional Management Areas



- Sub-Region 1:
  - Chatham County
  - Effingham County (south of Hwy 119)
  - Bryan County
  - Liberty County
- Sub-Region 2:
  - Glynn County
- Sub-Region 3:
  - The remaining 19 counties.
  - Effingham County (north of Hwy 119)
  - No net increases in UF withdrawal amounts
     Allow up to 5 mgd to be withdrawn
  - to be withdrawn from UF through 2008
  - No restrictions



### Elements of 2006 CPP Management Plan

- Sub-Region 1 Red Zone (Chatham and Southern Effingham County):
  - Restrict withdrawals from Upper Floridan aquifer to 2004 actuals.
  - Reduce withdrawals by at least an additional 5 mgd by 2008.
    - City of Savannah -2.111 mgd
    - International Paper 1.289 mgd
    - Other users 1.600 mgd
  - Require implementation of water conservation and reuse measures.
- <u>Sub-Region 1 Yellow Zone (Bryan and Liberty Counties)</u>:
  - Allow up to an additional 5 mgd of Upper Floridan aquifer to be withdrawn through 2008.
  - Require implementation of water conservation and reuse measures.
- <u>Sub-Region 2 (Glynn County):</u>
  - Manage withdrawals from the Upper Floridan aquifer in such a manner so that the current "tshaped" plume doesn't change.
  - Require implementation of water conservation and reuse measures.
- <u>Sub-Region 3 (19 Counties plus Effingham Co. north of Hwy 119)</u>:





#### **Coastal Activities Since 2008**

- In 2011, EPD simulated how long it would take salt-water plumes to reach Savannah:
  - Simulation indicated that in
    50 yrs the saltwater plume
    would move toward
    Savannah but not yet reach
    it.
  - Model assumed Savannah area pumping of 69 mgd (2000).
  - Savannah area pumping in 2012 was 50.6 mgd.
  - Simulations indicated ~125
    yrs for saltwater to reach
    Savannah area wells (2000).
  - Chlorides are moving toward cone of depression and will not reach Tybee Island.





#### Saltwater Plume Movement Study

- <u>2013 EPD presents modeling work done by USGS:</u>
  - USGS modeling of plume movement when pumping ceases.
    - 100 years of pumping (2004-2104) where pumping in the Savannah area and Hilton Head Island were eliminated.
    - 100 years of pumping (2004-2104) where pumping in the entire model domain was eliminated.
  - USGS simulations show that even with pumping eliminated for an extended period of time, the saltwater plume pretty much stays in place.





# Saltwater Plume Movement Study

- Simulations were done to determine what amount of water could be pumped from the Floridan aquifer without causing movement of the saltwater plume toward the Savannah area.
  - Baseline model was run with no pumping in the Savannah area or on Hilton Head Island.
  - Simulate what amount of water could be pumped from the aquifer and still have the direction of groundwater movement pointing to the north (away from the Savannah area).
  - Pumping scenarios included pumping from the Savannah area, Hilton Head, and the Yellow Zone.
  - Hilton Head Island pumping by itself (1.7 mgd)
  - Savannah area pumping by itself (10.3 mgd)
  - Yellow Zone pumping by itself (34.9 mgd)



# Sustainable Yield to Keep the Potentiometric Surface flowing away from Savannah



Combinations of Withdrawals That Do Not Cause the Plume to Move Further Inland

#### Sustainable Yield Depends on Where Pumping Occurs

| Area Withdrawal (mgd) |                                                                                                                                                                          |                                                                                                                       |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Yellow Zone           | Hilton Head                                                                                                                                                              | Withdrawal (mgd)                                                                                                      |  |
| 0.000                 | 1.723                                                                                                                                                                    | 1.723                                                                                                                 |  |
| 0.000                 | 0.861                                                                                                                                                                    | 7.736                                                                                                                 |  |
| 0.000                 | 0.000                                                                                                                                                                    | 10.312                                                                                                                |  |
| 8.735                 | 0.646                                                                                                                                                                    | 14.539                                                                                                                |  |
| 13.102                | 0.431                                                                                                                                                                    | 16.972                                                                                                                |  |
| 17.468                | 0.215                                                                                                                                                                    | 19.403                                                                                                                |  |
| 17.472                | 0.000                                                                                                                                                                    | 24.352                                                                                                                |  |
| 26.204                | 0.000                                                                                                                                                                    | 29.645                                                                                                                |  |
| 34.934                | 0.000                                                                                                                                                                    | 34.934                                                                                                                |  |
|                       | Vithorawal (n        Yellow Zone        0.000        0.000        0.000        0.000        10.000        13.102        17.468        17.472        26.204        34.934 | Yellow ZoneHilton Head0.0001.7230.0000.8610.0000.0008.7350.64613.1020.43117.4680.21517.4720.00026.2040.00034.9340.000 |  |



12

## CSSI Model Updates (2017-2018)

- Grid discretization reduced to 1,200 1,700 ft:
  - Red Zone
  - Yellow Zone
  - Southern half of Bulloch County, Evans County, Long County, McIntosh County, and eastern portion of Tattnall County.
- Grid spacing for remainder of model adjusted to avoid numerical instability.
- Transient simulation period extended through 2016 (1915-2016). Steady state simulation of 2016 pumping conditions was developed.
- Model updated to include 2008-2016 reported withdrawals (M&I and Ag use):
  - Model update eliminated distributed fluxes for years 2008-2016 in areas where Ag withdrawal information was available. Withdrawals now assigned to coordinates.
    - Appling, Bacon, Brantley, Bryan, Bulloch, Burke, Candler, Chatham, Effingham, Evans, Emanuel, Jenkins, McIntosh, Pierce, Screven, Tattnall, Toombs, Ware, and Wayne)
- Model used to simulate steady state groundwater conditions under December 2015 permitted groundwater withdrawals.



### CSSI Model Updates (2017-2018)



### CSSI Model Updates (2017-2018)



# Red and Yellow Zone Permitted Annual Averages



#### Red and Yellow Zone Permitted and Reported Annual Averages

#### Annual Average Permitted Limits (mgd)

| Zone        | 1995    | 2000    | 2005    | 2010   | 2015   | <u>2020</u> |
|-------------|---------|---------|---------|--------|--------|-------------|
| Red Zone    | 93.937  | 87.172  | 80.772  | 60.391 | 62.213 | 52.333      |
| Yellow Zone | 21.847  | 24.563  | 26.625  | 26.695 | 28.872 | 29.836      |
| Totals      | 115.784 | 111.735 | 107.397 | 87.086 | 91.085 | 82.169      |

#### Annual Average Reported Limits (mgd)

| Zone        | 1995   | 2000   | 2005   | 2010   | 2015   | 2020   |
|-------------|--------|--------|--------|--------|--------|--------|
| Red Zone    | 66.274 | 64.358 | 57.102 | 53.370 | 48.149 | 44.132 |
| Yellow Zone | 12.084 | 15.061 | 15.893 | 17.387 | 18.848 | 19.319 |
| Totals      | 78.358 | 79.419 | 72.995 | 70.757 | 66.997 | 63.451 |

#### **Scheduled 2025 annual permitted limits:**

Red Zone - 47.554 mgd

Yellow Zone - 28.795 mgd

Totals – 76.349 mgd



#### USGS Groundwater Level Measurements – Savannah Area



#### USGS Groundwater Level Measurements – Savannah Area



💳 Period of approved data 🛛 💳 Period of provisional data

#### USGS Groundwater Level Measurements – Hilton Head Island Area



Period of approved data

#### **Ongoing Information of Coastal Resources**

- Georgia EPD Coastal Water Study
  - <u>https://epd.Georgia.gov/coastal-water-study</u>
  - Background information and Coastal Permitting Plan Guidance documents
  - Information on the Technical Advisory Committee work
  - Information on the Sound Science Initiative
- USGS South Atlantic Water Science Center Coastal Sound Science Initiative:
  - https://www2.usgs.gov/water/southatlantic/ga/projects/coastal/index.html
  - Real Time monitoring of wells in Coastal Georgia
  - Background information on Coastal history
  - Coastal Sound Science Initiative Publications



#### Christine Voudy Georgia Environmental Protection Division (470) 607-2621 <u>christine.voudy@dnr.ga.gov</u>

