

enda

Objectives:

- 1) Select high priority management practices
- 2) Review water quantity and quality committee reports
- 3) Approve draft plan for public review
- 4) Discuss next meeting and remaining process for plan review and revision

```
9:45 am Registration
10:00 am Welcome, Agenda Review – Courtney Cooper, GWPPC
10:10 am Chair's Report – Chairman Davis
10:20 am Planning Timeline – Meagan Szydzik, GWPPC
10:30 am Chattahoochee River Act – Chris Manganiello, Chattahoochee Riverkeeper
10:45 am EPD Report – Kelli-Ann Schrage, GAEPD
11:00 am Water Quality Committee Report – Victoria Barrett
11:50 am Introduce Management Practice Prioritization Activity – Courtney Cooper, GWPPC
12:00 pm Lunch
12:40 pm Discuss Management Practice Priorities – Courtney Cooper, GWPPC
1:00 pm ACFS Drought Exercise Overview
1:15 pm Water Quantity Committee Report – Patrick Bowie
1:30 pm Discuss outstanding planning questions
2:30 pm Public Comment
2:50 pm Approval of draft plan for public review
3:50 pm Next Steps – Meagan Szydzik, GWPPC
4:00 pm Adjourn
```


Introductions

STEVE DAVIS

Columbus Water Works

Council Chair for:

Middle Chattahoochee Sddavis@cwwga.com (706) 649-3430

KELLI-ANN SCHRAGE Liaison for:

Georgia EPD

Middle Chattahoochee Kelli-ann.sottile@dnr.ga.gov (470) 938-3351

STEPHEN SIMPSON

Black & Veatch

Council Advisor for:

Middle Chattahoochee simpsonsl@bv.com (770) 521-8105

ROB BOCARRO

Black & Veatch

Council Advisor for:

Middle Chattahoochee bocarrora@bv.com

(770) 754-0318

JASON HOWARD

Black & Veatch

Council Advisor for:

Middle Chattahoochee howardje@bv.com

(770) 521-8133

KRISTIN ROWLES

GWPPC

Council Lead for:

Middle Chattahoochee

krowles@h2opolicycenter.org (404) 822-2395

MARK MASTERS

GWPPC

Council Advisor for:

Middle Chattahoochee mmasters@h2opolicycenter.org

MEAGAN SZYDZIK

GWPPC

Council Advisor for:

Middle Chattahoochee mszydzik@h2opolicycenter.org

(770) 543-8497

COURTNEY COOPER

GWPPC

Council Advisor for:

Middle Chattahoochee

ccooper@h2opolicycenter.org

Middle Chattahoochee Council Members

Name	City	County	
Hannah V. Anderson	Fort Gaines	Clay	
John M. Asbell	LaGrange	Troup	
Victoria Barrett	Richland	Stewart	
Laura Lee Bernstein	Columbus	Muscogee	
Patrick Bowie	LaGrange	Troup	
Jimmy Bradley	Cuthbert	Randolph	
Barbie Crockett	Centralhatchee	Heard	
Steve Davis, Chair	Columbus	Muscogee	
Philip Eidson	Tallapoosa	Haralson	
Tony Ellis	Tallapoosa	Haralson	
James Emery	LaGrange	Troup	
Gardiner Garrard	Columbus	Muscogee	
Dan Gilbert	Columbus	Muscogee	
Joseph Griffith	Buchanan	Haralson	
Tim Grizzard	Franklin	Heard	
Jimmie L. Hayes	Morris	Quitman	
Senator Jason Anavitarte	(Ex-Officio)		

Name	City	County	
Kevin Hayes	Franklin	Heard	
Bill Heath	Breman	Haralson	
Ken Johnson	Fort Gaines	Clay	
Harry Lange	Cataula	Harris	
Carvel Lewis	Georgetown	Quitman	
Adolph McLendon	Richland	Stewart	
George E. Moon III	West Point	Harris	
Mac Moye	Lumpkin	Stewart	
Denney Rogers	Ephesus	Heard	
Jim Thornton	LaGrange	Troup	
Kenneth M. Van Horn	Cusseta	Chattahoochee	
Jason Weeks	Georgetown	Quitman	
Don Watson (Alternate)	LaGrange	Troup	
Matt Windom	Bowdon	Carroll	
Robert York	Tallapoosa	Haralson	
Donrosantativa Dandy Niv /C	·· Off:=:=)	<u>'</u>	

Summary from last meeting - November 30th

- Discussed water quality assessment results
- Reviewed and discussed committee reports from Water Quality & Quantity Committees
- Discussed outstanding committee issues in break-out sessions
- Discussed plan revisions that needed input from the full Council
- Considered revisions to recommendations from the Inter-Council Coordination Committee

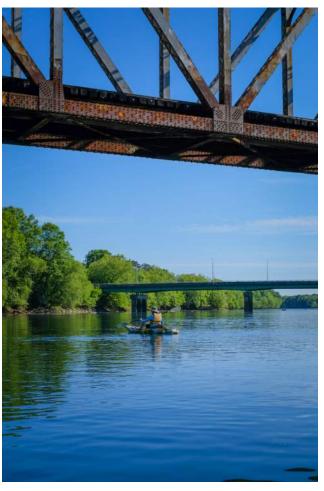
Regional Water Plan Update

Regional Water Plan Review and Revision Schedule

Meeting One 4th Quarter 2021 Meeting Two 1st Quarter 2022 Meeting Three 2nd Quarter 2022 Meeting Four 3rd Quarter 2022 Meeting Five 4th Quarter 2022 Meeting Six 1st Quarter 2023 Draft Plan Meeting Seven (Final) 2nd Quarter 2023 Incorporate Comments

EPD targeted date of adoption of revised
Regional Water Plan by
June 2023

- Established in 1994
- 11th licensed Waterkeeper
- Approximately 10,000 members
- Offices in Gainesville, Atlanta and LaGrange
- Non-profit: Advocacy, education, research, communications, cooperation, monitoring, and legal action

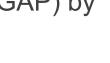

https://chattahoochee.org/

Chattahoochee River Program, Sec. 8144

- Water Resources Development Act (2022)
- Corps to develop 2-yr Comp Plan
- Eligible project categories:
 - · Sediment and erosion control projects,
 - Ecosystem restoration projects,
 - Protection of essential public works projects,
 - Wastewater treatment plants and related facilities,
 - Beneficial uses of dredged material projects, and
 - Other related projects
- Cost-share 75/25 percent federal/non-federal
- Authorization to Appropriate \$40 million
- Questions? cmanganiello@chattahoochee.org

Draft and Final Regional Water Plans

- Council submits Draft Updated Plan to EPD by Wednesday, March 29
- Draft Updated Plan will be put on Public Notice by EPD on March 31
- 45-day public comment period will end on May 15, 2023
- Council reviews/incorporates public comments received during their June meetings
- Final Updated Plan should be submitted to EPD by Friday, June 23
- EPD Director adopts plans by June 30, 2023


EPD Updates

- EPD finalized a Water Quality Trading Guidance on February 7
 - https://epd.georgia.gov/water-quality-trading
- Public drinking water systems: lead service line inventories (due Oct. 2024)
 - Rulemaking to address electronic submissions
 - EPD & GEFA implementing an online system to accept & track these submissions
 - https://epd.georgia.gov/watershed-protection-branch/drinking-water
- Construction stormwater general permits will be reissued this summer
 - Stakeholder meetings have been held
 - Draft permits will go out on public notice
 - https://epd.georgia.gov/watershed-protection-branch/stormwater

FY2023 Section 319(h) Grant Funding

- Currently accepting applications for projects that:
 - Implement watershed management plans
 - Address impaired waters
 - Address NPS pollution
 - Install Best Management Practices (BMPs)
 - Engage in partnerships
 - Collect water quality data
 - Result in measurable water quality improvement
- Submit online applications via the 319(h) Grant Application Portal (GAP) by **APRIL 30, 2023**



FY2023 Section 319(h) Grant Funding

- Cost-Share: 60% Federal/40% Non-Federal Match
- Up to \$400,000 per project
- Estimated FY2023 Total Funding Available: \$2.1 Million
- Preferred Project Period: 3 years

- State Agencies
- City or County Governments with Qualified Local Government status
- Regional Commissions
- Soil and Water Conservation Districts
- Resource Conservation and Development Councils
- Local and regional school systems
- State colleges and universities

Contact: Mary Gazaway,

mary.gazaway@dnr.ga.gov

or (470) 524-0556

Water Quality Committee: February Meeting

- Meeting on February 28, 2023
- Review Dissolved Oxygen and Chlorophyll a/Nutrient issues questioned by the water quantity committee
- Review and discuss Section 3, 5, 6
- Select representative to present at today's council meeting

Members: Victoria Barrett, Laura Lee Bernstein, Harry Lange, Ed Moon, Steve Davis

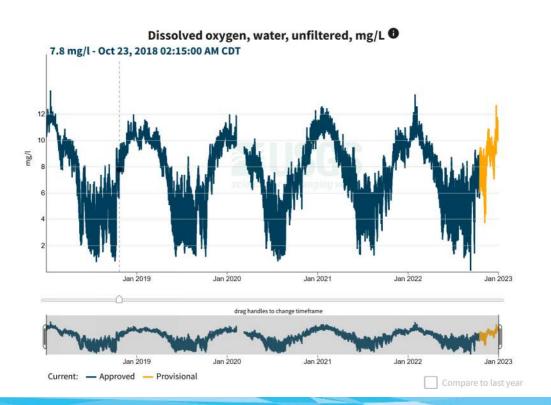
Section 3.3.1. - Fish & Wildlife Conservation Impacts

The health of the fisheries in West Point and Walter F. George Lakes is dependent in part on the balance of nutrient availability in the form of phosphorous and nitrogen contributions from point and nonpoint sources of pollution and resulting algal productivity measured in terms of chlorophyll-a. Similarly, the relationships between water turbidity, water detention/velocity, water temperature, weather/flow conditions, pH, growing season duration, and algal growth require further study in West Point and Walter F. George lakes to support re-evaluation of the Chlorophyll-a standards that are appropriate for these reservoirs. A chlorophyll-a standard of 25 micrograms/liter for Walter F. George Lake has been suggested as reflective of Southeastern Plains Ecoregion reservoirs. At Walter F. George Lake, GAEPD plans to develop a total maximum daily load (TMDL) standard and will analyze the requirements needed to meet the TMDL for total phosphorus and total nitrogen. If the evaluation indicates the criteria cannot be met, GAEPD may re-evaluate the standards at Walter F. George. At West Point, GAEPD lowered the lake's chlorophyll-a standard levels in 2015 and additional studies are not planned at this time. In 2021, EPD released a new lake criteria guidance document for recommended ambient water quality criteria to address pollution in lakes and reservoirs.

The Middle Chattahoochee Water Planning Council recognizes the need for a better understanding of ecological cause and response variables in the Middle Chattahoochee reservoirs in order to support setting an operating management strategy. The Council believes that precautions should be taken to ensure the long-term sustainability of the reservoirs as fishery and wildlife habitat.

Section 3.3.1 - Water Quality Impacts

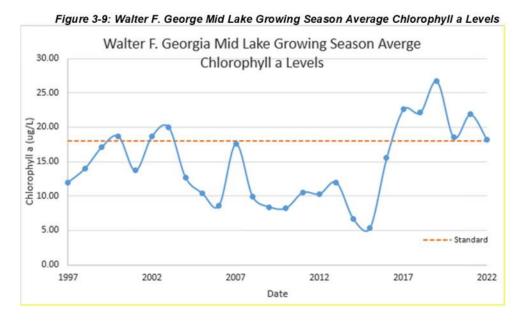
USACE operations can affect downstream water quality, and the USACE should operate in a manner that supports water quality downstream. For example, instream flows in the Chattahoochee River at Columbus and Columbia have been identified as areas of concern by the Middle Chattahoochee Water Planning Council regarding flow availability for the assimilation of permitted wastewater discharges, including the discharge of the City of Columbus. The WCM acknowledges flows needed for assimilative capacity at Columbus, but it is not obligated to meet those flows as operational controls. Georgia Power projects located above Columbus are required in their FERC licenses to provide minimum flows at Columbus, but those releases are dependent on releases from West Point Dam. The flow release pattern by the USACE and concern regarding the available assimilative capacity in the Chattahoochee River are a driver for the Council's desire to achieve an equitable balance of flow contributions from the Chattahoochee and Flint Basins to meet required downstream flows. Heavy rainfall and resulting high river flows in the Flint River can result in more water storage and lower flow releases in the Chattahoochee River.


Section 3.3.3 Surface Water Quality

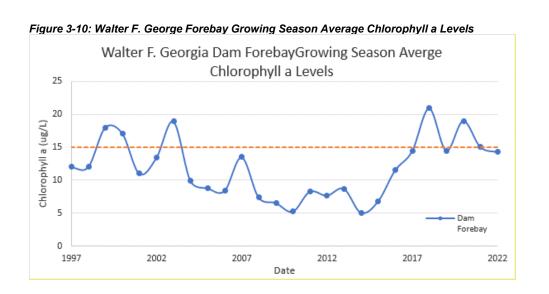
The Council has discussed that there is only moderate to limited assimilative capacity in the Chattahoochee River downstream of Walter F. George Reservoir. Figure 3-7 below is a graph of the dissolved oxygen measured 0.36 miles downstream of the dam from USGS data. The data shows that the operations of the dams (flow releases and operation of aerator systems) by the US Army Corps of Engineers may be contributing to a violation of the water quality standards of dissolved oxygen level never below 4 mg/L. The occurrence of low dissolved oxygen below the dam is a concern for the Council, and it is the basis for recommendations in management practice IU-2 in Section 6.

Section 3.3.3 Surface Water Quality

Figure 3-7: Dissolved Oxygen in the Chattahoochee River Downstream of Walter F. George Reservoir



Section 3.3.3 Surface Water Quality


The Council notes that data provided by GAEPD below supports the model finding that existing Chlorophyll a standards have not been met in Walter F. George at either the mid-lake or dam forebay sampling locations in the 2018-2022 timeframe. The result of this finding is that GAEPD must develop a TMDL as required by the

Clean Water Act.

Section 3.3.3 Surface Water Quality

Section 5.3 Surface Water Quality Comparisons

The Chattahoochee River downstream of Walter F. George is projected to have limited assimilative capacity in the future similar to the existing conditions as noted in Section 3, and this supports the Council's recommendation in management practice IU-2 in Section 6.

As noted in Section 3, Walter F. George water quality data shows that water quality conditions do not currently meet standards, and the modeled findings for future conditions projects similar concerns. TMDL development to address this condition and resulting changes in water quality and the water quality assessment will be reviewed by the Council in future regional water plan updates.

Section 6.2 - Selected Water Management Practices

IU-1: Utilize and improve upon reservoir release quantity and timing in the Chattahoochee River to maintain and/or improve water quality in the Chattahoochee River below the Columbus Planning Node

Protect water quality in the Chattahoochee River in the Middle Chattahoochee Water Planning Region. Advocate for the U.S. Army Corps of Engineers operate such that:

- 1) the specific minimum flow levels stated in the Federal Energy Regulatory Commission license (800 cfs instantaneous; 1350 cfs daily average; 1850 cfs weekly average) are met at a frequency of 95% or higher at the USGS gauge at Columbus, and
- 2) any periods where flows are below these levels are managed to avoid possible downstream water quality impacts, including the stretch of river below Walter F. George Reservoir in which the water quality modeling shows assimilative capacity challenges (see Figure 5.2).

The Council recognizes that there may be tradeoffs in operations that support the system in meeting some targets while adversely affecting its capacity to meet others. The Council offers targets for flows and lake levels in Table 6-2 as its preferences and does not support implementation that leads to an outcome that is less desirable than historical conditions at any of these locations in the Basin.

See also: Recommendation #1 in Section 6.3.

Section 6.2 - Selected Water Management Practices

IU-2: Assess the potential to modify Chattahoochee River operations to protect instream uses and increase system conservation storage

Evaluate the following as possible changes in U.S. Army Corps of Engineers management in the Chattahoochee River Basin (See also: Recommendation #1 in Section 6.3):

- Revise the rule curve for West Point Lake winter drawdown operations to improve water resource benefits while also maintaining flood protection. A GAEPD study demonstrated the use of probability-based forecasts to reduce peak releases without compromising flood mitigation operations. Cooperative efforts between the state and the U.S. Army Corps of Engineers should be funded and implemented to fully evaluate and support adoption of the proposed rule curve modifications.
- Increase the rule curve at Lake Lanier by two feet to increase storage capacity in the system.
- Model Chattahoochee River operations under extreme conditions to evaluate system resilience (i.e., 2009 flood data; 1920's extreme drought data).
- Evaluate the stretch of river downstream of Walter F. George Reservoir to verify periods and river locations of low dissolved oxygen, probable causes, and recommendations to enhance assimilative capacity.

Section 6.2 - Selected Water Management Practices

WQ-8: Implementation of monitoring of E. Coli to monitor stream quality

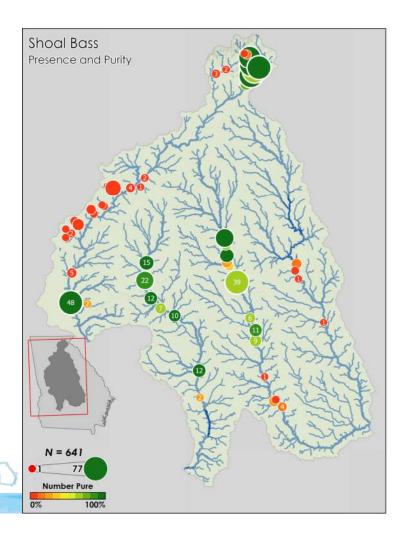
- Raise awareness of new E. Coli limits; Fecal Coliform limits were previously used as the bacterial indicator.
- Encourage seed grant or other research projects to delineate current water quality conditions in watersheds

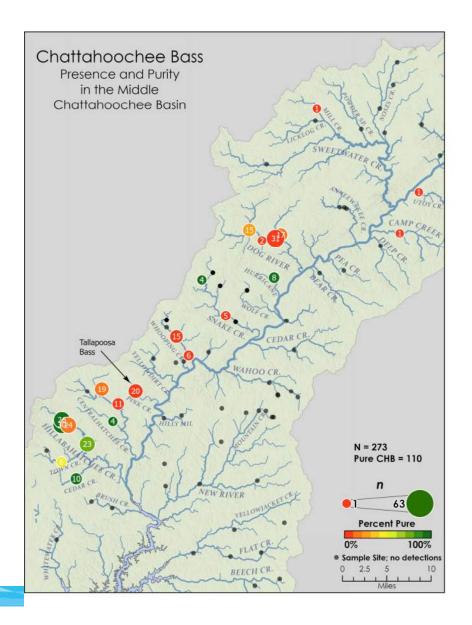
Short-Term Actions	Long-Term Actions	Responsible Parties
GAEPD will implement new bacterial limit requirement monitoring and limits in revised permits	Potential delisting of impaired streams based on new <i>E. Coli</i> data instead of existing Fecal Coliform data	GAEPD Permitted dischargers Watershed monitoring groups

Section 6.3 – Recommendations to the State

1. Address Regional Assimilative Capacity Limitations and Water Quality Concerns

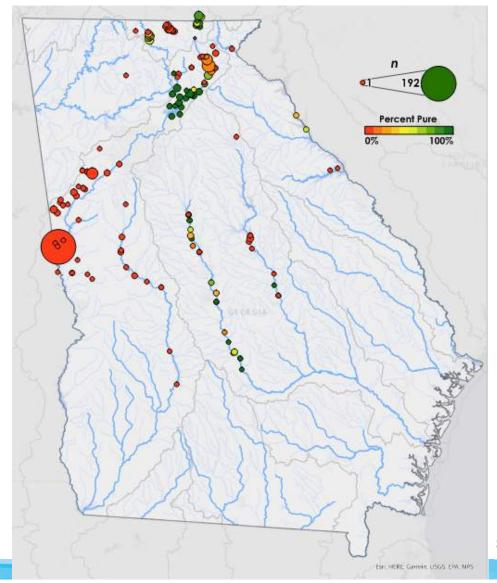
The Middle Chattahoochee Water Planning Council recommends the following to address potential limitations to assimilative capacity and water quality concerns:


- The State of Georgia should work with USACE and EPA to improve water quality conditions (assimilative capacity) below Walter F. George Reservoir (see Management Practices IU-1 and IU-2.)
- GAEPD should conduct more detailed assimilative capacity model verification and consider existing discharge permit revisions to ensure assimilative capacity is available in the Chattahoochee River below Walter F. George Reservoir to support economic development.
- GAEPD should collect more dissolved oxygen data directly downstream of West Point Lake to identify the need for potential enhancements to ensure water quality standards are met.
- GAEPD should reevaluate the water quality standards for Chlorophyll *a* for both West Point Lake and Walter F. George prior to development of TMDLs and resulting regulatory standard changes, considering the balance between nutrient needs for fisheries and other water quality concerns.



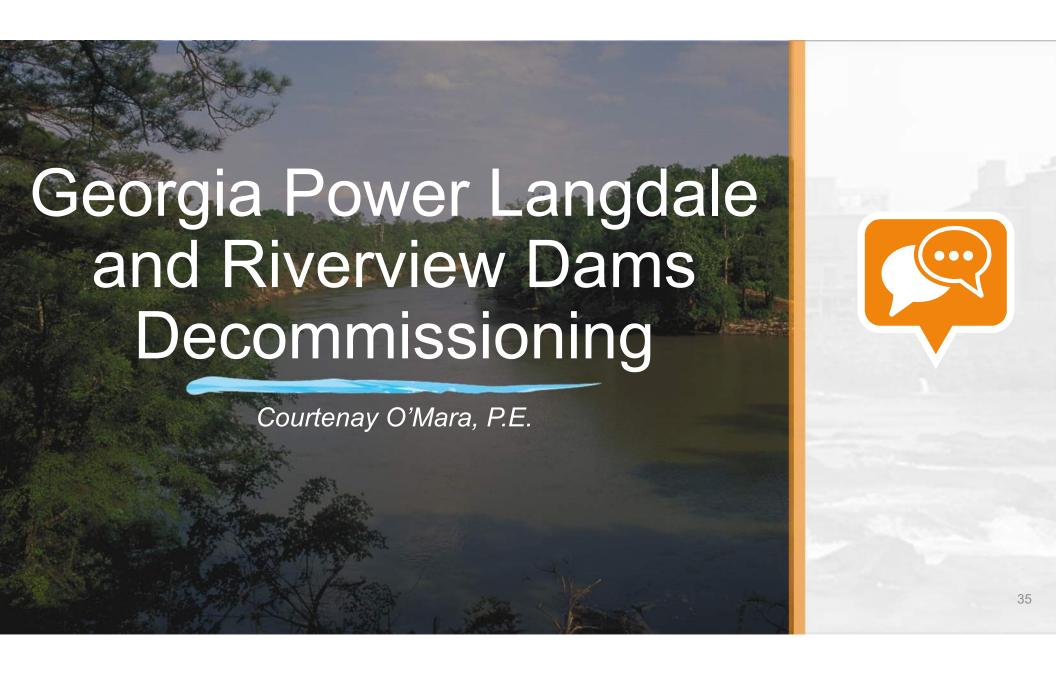
Question: What is the relationship between spotted bass and shoal bass? Particularly, are spotted bass native to this region and is there a competition that is driving shoal bass populations down?

Spotted bass are non-native in this area and hybridizing with native Shoal bass (Georgia's Official State Riverine Fish) and Chattahoochee bass to the point of extirpation in some areas of mainstem Chattahoochee and its tributaries. Spotted bass are causing tremendous problems all around the southeast and are pushing Smallmouth bass populations to the point of extinction. They are also helping to push Georgia's redeye bass to extirpation as well.



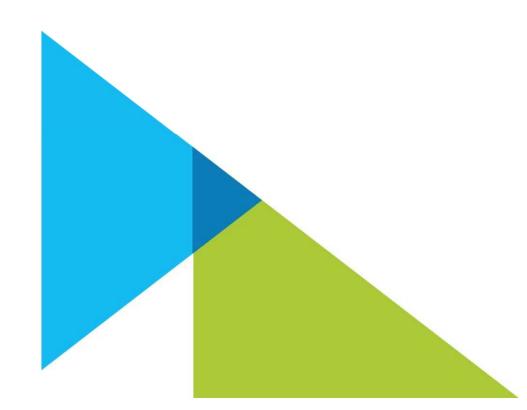
Alabama Bass (formerly Alabama Spotted Bass)
Genetics

Question: If changes were to be made to Walter F George dam similarly to what was done at Seminole, would Alabama Shad migrate all the way Columbus? If so, would this have a positive or negative impact to the other fish species?


Steve Sammons at Auburn reported that Alabama Shad are not migrating north according to recent 2010-2014 studies. Columbia Lock and Dam and Eufala Lock impede this migration. The closer conditions are to "natural", the better Shoal Bass and Alabama Shad coexist.

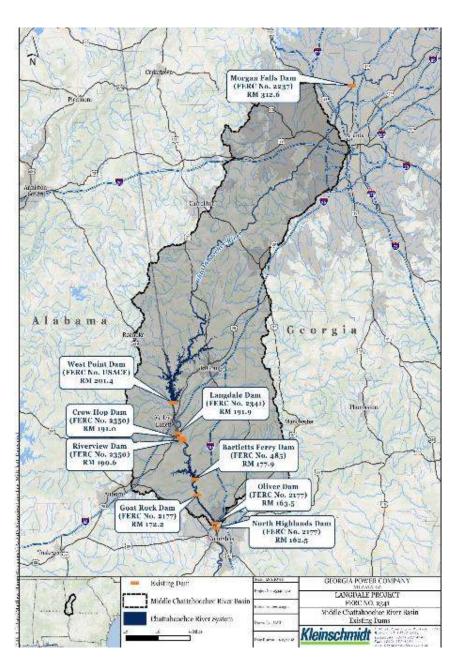
Question: With the removal of the low head Georgia Power dams between West Point and Columbus, will this allow shoal bass to extend their population and range upstream? Would the habitat upstream support them there?

Yes, removal of dams will likely connect and increase Shoal Bass populations.

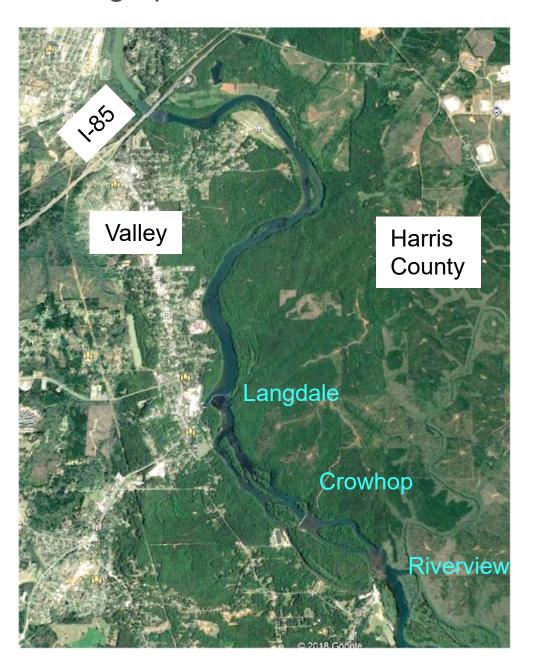


Langdale and Riverview Dams FERC License Surrender and Decommissioning (FERC No. 2350 and 2341)

Middle Chattahoochee Water Planning Council March 16, 2023


Courtenay O'Mara, P.E.

Proximity of Langdale and Riverview Projects in the Middle Chattahoochee Basin

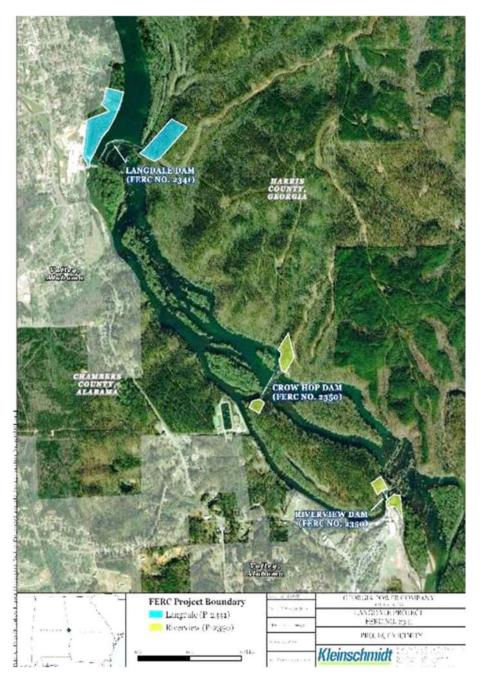


- 9.5 miles from West Point Dam to Langdale Dam
- 1.5 miles from Langdale to Riverview
- 1 mile from Langdale to Crowhop
- Upper reaches of Lake Harding impounded to Crowhop Dam
- Bartletts Ferry Dam, Goat Rock Dam, Oliver Dam and North Highlands Dam between Riverview and City of Columbus, GA

Geographic Landmarks and Land Use

South of Interstate 85

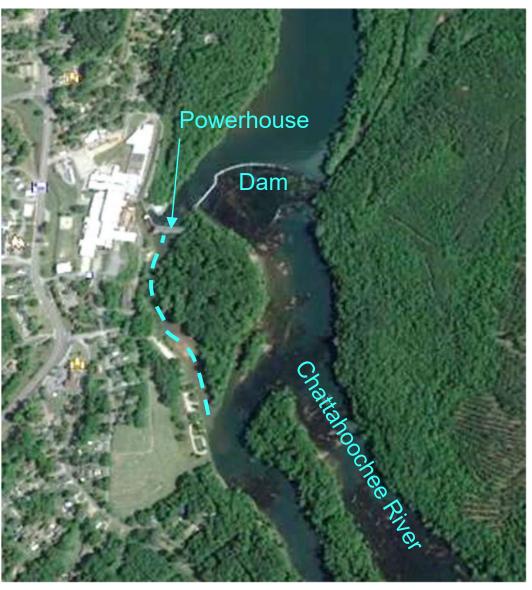
South of West Point, Georgia and adjacent to City of Valley, Alabama in Chambers County, Alabama.


- Commercial/Industrial
- Residential

Adjacent to Harris County, Georgia

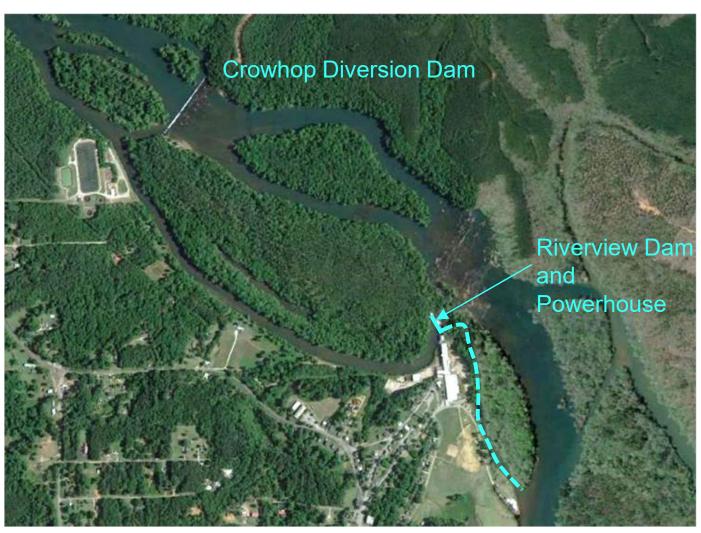
Rural

Description of Langdale and Riverview Projects



- Operating Mode: Run-of-River, flow regime dependent upon upstream Corps of Engineers' West Point Dam
- ➤ Dam Height: Range from 12 feet at Riverview and Crowhop to 15 feet at Langdale
- FERC Project Acreage: Approximately 28 acres at Langdale Approximately 11 acres at Riverview and Crowhop combined
- > FERC Licenses Expire: December 31, 2023
- ➤ Application to Surrender Licenses Filed with FERC: December 18, 2018

Langdale Project Area



2018 Google Earth Imagery

Riverview Project Area

2018 Google Earth Imagery

Facilities and Generating Units

Langdale Powerhouse

Langdale Dam

Riverview Powerhouse

Crowhop Dam

Studies and Other FERC Process Documents

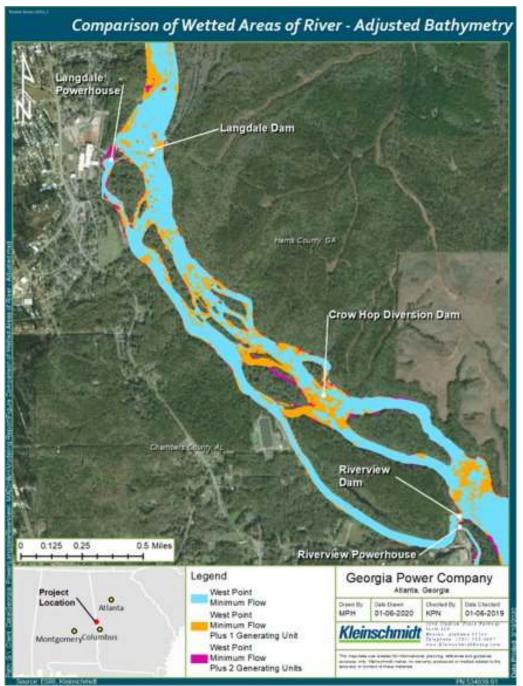
Field Studies

- > H&H Model
- > Cultural Resources
- ➤ Mussel Survey
- ➤ Sediment Quality Draft
- Sediment Transport Draft
- ➤ Shoal Bass Survey Draft

Desktop Studies

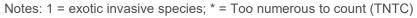
- Water Quality
- ➤ Shoal Bass Life History

Other Documents for Process


- Decommissioning Plan & Engineering Drawings
- Applicant PreparedEnvironmental Assessment

H&H Modeling

H&H Modeling


- East Alabama/Lower
 Valley WWTP discharge
 permit based on 7Q10
 flow of 136 cfs
- H&H modeling indicates post-removal flow of 193 cfs under minimum flow discharge from West Point

Mussel Study Results

Mussel Survey: 31 individuals, 2 native and 1 exotic species

Stream	Scientific name	Common name	Federally listed	State listed	# Collected 16- 18 June 2020
	Elliptio pullata	Gulf spike	No	No	3
above Langdale Dam	Villosa vibex	southern rainbow	No	No	9
	Corbicula fluminea ¹	Asian clam	No	No	TNTC*
below Langdale Dam	Corbicula fluminea	Asian clam	No	No	TNTC
above Crow	Villosa vibex	southern rainbow	No	No	5
Hop Dam	Corbicula fluminea	Asian clam	No	No	TNTC
below Crow	Villosa vibex	southern rainbow	No	No	2
Hop Dam	Corbicula fluminea	Asian clam	No	No	TNTC
	Elliptio pullata	Gulf spike	No	No	9
above Riverview Dam	Villosa vibex	southern rainbow	No	No	3
	Corbicula fluminea	Asian clam	No	No	TNTC
below Riverview Dam	Corbicula fluminea	Asian clam	No	No	TNTC

Villosa vibex (southern rainbow)

Corbicula fluminea (Asian clam)

Elliptio pullata (Gulf spike)

- > Impacts from dam removal are unlikely as no state or federally listed mussels were detected
- > USFWS' experienced dam removal team to conduct the demolition and associated oversight

Water Quality Desktop Study

Water quality measurements

Parameter	Units	0.5 Miles below West Point Dam	3 Miles Below West Point Dam, 6.3 miles above Langdale	1 Mile Below Riverview Powerhouse
Monitoring Period		Jan – Sep 2019	2010 – 2012	2009 – 2010
Water Temperature	(°C)	9.58 - 29.08	8.16 – 28.14	7.94 – 29.68
Dissolved Oxygen	(mg/L)	3.74 - 10.33	4.29 – 11.44	7.54 – 11.90
рН	(SU)	6.21 - 7.30	6.33 - 6.82	6.61 - 7.70
Conductivity	(µs/cm)	57 - 102	76 – 139	58 – 129
Turbidity	(NTU)	2.7 – 12.0	1.3 – 10.7	0 – 3000
NO2-NO3	(mg/L)	0.45 - 0.71	0.43 – 1.31	0 – 1.12
NH3	(mg/L)	0 - 0.23	0.04 - 0.27	0 - 0.4
TKN	(mg/L)	0.27 - 0.56	0.20 - 0.49	-
Total Phosphorus	(mg/L)	0 – 0.04	0 – 0.05	0.01 – 0.4
Sources:		GEPD 2019	GEPD 2019	GPC 2011

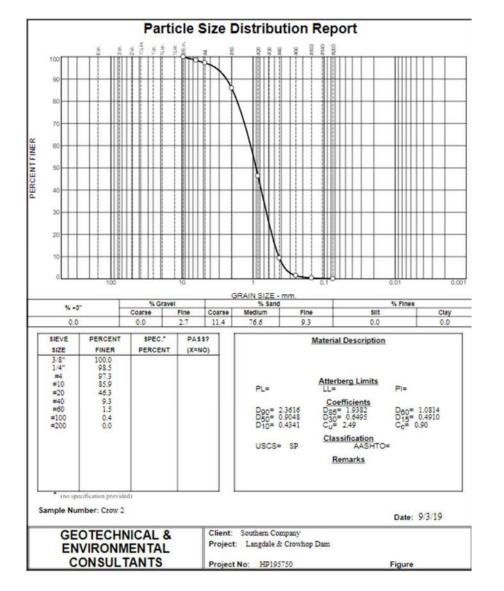
Water Quality Desktop Study

Water quality measurements from mussel survey (July 2020)

Parameter	Units	Langdale Dam Avg	Crow Hop Dam Avg	Riverview Dam Avg
Monitoring Period		16-Jun-20	17-Jun-20	18-Jun-20
Temperature	(°C)	23.5	23.1	23.1
Dissolved Oxygen	(mg/L)	5.4	7.5	7.9
рН	(SU)	5.4	6.1	5.9
Conductivity	(<i>m</i> s/cm)	0.05	0.05	0.05
Turbidity	(NTU)	0	0	0

Source: 2020 GPC Mussel Survey

Sediment Sample Locations



Sediment Borings

Project: Southern Company Dams Valley, AL			Boring No: CROW-3							
	The state of the s	Project No: HP195750								
ocation: See Figure 2 GS Elevation:										
The second line with the last line with line with the last line with line with the last line with line wi	quipment: Amdrill/Vibrocore				THE RESERVE THE PARTY OF THE PA					
Water L	evel:	En	gin	eer Geolog	st:			_	_	_
Depth (R) Soil Symbol	Soil Description	Committee	adds advance		(blo	ration ws ft,)	t Data		M. Ushan
-+"	Water depth 2 feet.				Ť	Ť	H	H	T	ŕ
5-0000000000000000000000000000000000000	ALLUVIUM tan-brown, silty, fine to coarse SAND (SP) Gradation sample taken (CROW 3) RESIDUUM grey, silty GRAVEL (GP); with sand Gradation sample taken (Crow 3, 4.5-8 This is sample with hydrometer	0)								
10-	AUGER REFUSAL ENCOUNTERED AT 8.0ft									
15-										
- Boring - Depths - Depths encoun	and sampling performed in accordance with ASTM D 1586, are measured from existing ground surface at time of drilling, are shown to illustrate general arrangements of the strata need at the boring location. use depths for determinations of quantities or distances.	NOTES:					Ш.	Ш		

Sediment Quality

Table 4-1 Analytical Results for Metals Analyzed in Sediment Samples Collected from the Langdale and Riverview Project during October 2021

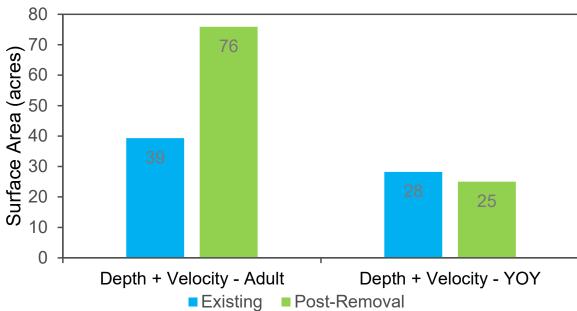
Amaluta	ECV			Sam	pling Loca	tion		
Analyte	ESV	Q1	Q2	Q3	Q4	Q5	Q6	Q7
			Metals: d	ry-weight	(mg/kg)			
Antimony	2	<0.18	<0.2	<0.2	<1.2	<0.18	<0.2	< 0.19
Arsenic	9.8	< 0.25	0.3	< 0.27	<1.6	< 0.24	0.295	0.285
Cadmium	1.0	< 0.0087	0.031	< 0.0095	0.5085	< 0.0087	0.0847	0.0796
Chromium	43.4	7.3	1.8	2.1	6.8	1.2	2.6	2.2
Copper	31.6	1.4	1.2	0.72	13	0.3975	0.98	0.94
Lead	35.8	1.3	1.4	1.3	15	0.99	1.6	1.7
Mercury	0.18	< 0.003	< 0.0032	< 0.0032	< 0.0039	< 0.003	< 0.0032	< 0.0031
Nickel	22.7	3.3	0.88	0.82	3.2	0.6275	1.4	1.2
Selenium	0.72	< 0.073	< 0.076	< 0.077	< 0.092	< 0.071	< 0.076	< 0.076
Silver	1.0	<0.027	< 0.029	< 0.029	< 0.17	0.0885	< 0.029	<0.028
Zinc	121	6.3	6.7	7.3	43	2.8	13	10

- 5 of 7 (Q1-3, 6, 7) sediment quality borings comprised primarily of sand and contaminants tend to not bind to larger sand and gravel
- All values less than Ecological Screening Value

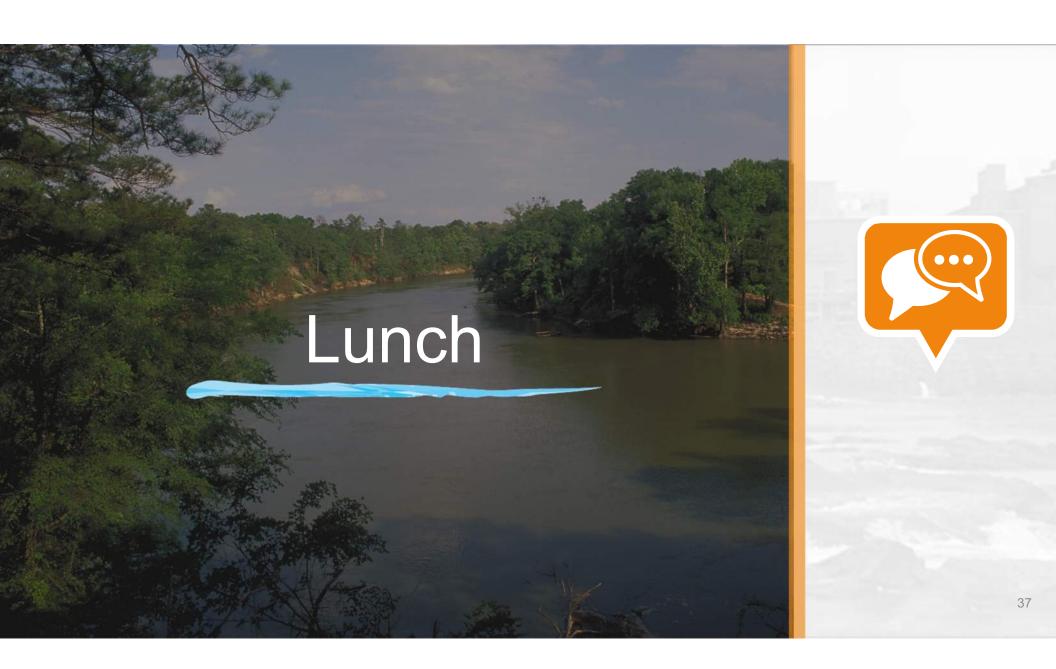
Table 4-2 Analytical Results for PAHs, PCBs, and Pesticides in Sediment Samples
Collected from the Langdale and Riverview Projects during October
2021

Amelian	FCV.	Sampling Location							
Analyte	ESV	Q1	Q2	Q3	Q4	Q5	Q6	Q7	
	P	AHs, PCBs, a	nd Pesticio	les: dry-w	eight (μg	/kg)		:	
Total Low Molecular Weight PAHs (LMW-PAHs)	600	1.8	<5.97	<5.97	60.5	1.7	<6	170.8	
Total High Molecular Weight PAHs (HMW-PAHs)	1,000	7.1	<16.11	<16.11	511	25.8	<16.22	650	
Total PCB Aroclors	59.8	0.26	<1.008	<1.007	<1.182	0.54	0.22	0.18	
Chlordane	3.2	<0.21	< 0.23	< 0.23	< 0.27	< 0.21	<1.1	< 0.22	
4,4' DDE	1.4	< 0.01	<0.011	< 0.011	< 0.013	< 0.0099	< 0.054	< 0.01	
Dioxins/Furans	0.0025	0.00041	0.00012	0.0001	0.0023	0.00032	0.000097	0.00023	

Shoal Bass



Areas with Optimal Depth and Velocity



Decommissioning Tasks

	5

Task	Date of Completion
File Surrender Application and Draft Outline for the Decommissioning Plan	December 2018
Conduct Decommissioning Studies	Winter 2019-May 2022
File Final Decommissioning Plan, Draft & Final Studies, and EA	September 2022
Began Obtaining Corps permit	Begin July 2022
FERC Notices/Solicits Comments	November 17, 2022 (30 days)
Implement FERC approved Dam Decommissioning Plan	Estimated Summer/Fall 2024 (License Exp. 12/31/23)

Water Quality Committee: January Meeting

January 30th

- Covered updates made to the Water Control Manual
- Discussed the Alternative Population Scenario model runs

Members Present

 Matt Windom, James Emery, Steve Davis, Patrick Bowie, Harry Lange

Population Projections

County	2020	2030	2040	2050	2060
Harris	34,712	37,327	39,640	41,902	44,818
Harris alternate scenario	34,668	39,873	44,141	49,233	54,907
Muscogee	191,626	179,704	166,681	153,247	141,670
Muscogee alternate scenario	206,922	225,912	233,750	238,600	247,548

Alternate Population Scenario Water Withdrawal Projections

County	Facility	Scenario	2019 mgd	2060 mgd
	Harris County Water	Current Scenario Harris County Water		3.99
Harris	Works	Alternate Scenario	1.86	3.00
	Pine Mountain Valley Water Association	Current & Alt Scenario	0.427	0.917
	Columbus Water	Current Scenario	33.24	23.22
Muscogee	Works	Alternate Scenario	33.24	37.7
	Fort Benning	Current & Alt Scenario	1.55	1.07

Alternate Population Scenario Wastewater Discharge Projections

County	Facility	Scenario	2019 mgd	2060 <i>mgd</i>
Muscogee	Columbus Water	Current Scenario	37.64	27.83
Muscogee	Works	Alternate Scenario	37.64	45.1

Columbus Flow Summary

Scenario		Future 2060M&I	Future_2060M&I_Alternative
Daily flow >= 1,350 cfs	Days	26940	26890
	Percentage	92.197%	92.026%
7-day average flow >= 1,350 cfs	Days	29210	29209
	Percentage	99.986%	99.983%
7-day average flow >= 1,850 cfs	Days	28528	28480
	Percentage	97.652%	97.488%

Page 3-5:

3.Navigation is one of the Congressionally authorized purposes of the federal reservoir projects on the Chattahoochee River. The head of navigation begins at Columbus and extends south to Apalachicola Bay. Maintaining this navigational channel is the responsibility of the U.S. Army Corps of Engineers and flow control is provided by upstream reservoirs. The U.S. Army Corps of Engineer's (USACE) Water Control Manual (WCM) for Apalachicola-Chattahoochee-Flint operations notes when hydrologic conditions are met, the USACE will provide a navigation season between January and May, dependent on actual and projected system-wide conditions in the ACF Basin.

At this time, navigation of the river is hindered by an inability to maintain-the locks and dams due to lack of funding.

Section 6: Recommendation to the State 11 Added based on Council discussion in December

11. Maintain Navigation between Columbus and Apalachicola Bay

Navigation is currently hindered on the Chattahoochee River from Columbus to Apalachicola Bay by a lack of maintenance of the locks and dams. The U.S. Army Corps of Engineers are responsible for maintaining this navigational channel and have reported to State the amount of funding needed to undertake the maintenance repair needs (see Navigation in Section 3.2). The Council recommends that the State provides the necessary funding in order to return the facilities to service in support of navigation, to ensure the recreational and the economic sustainability of the region.

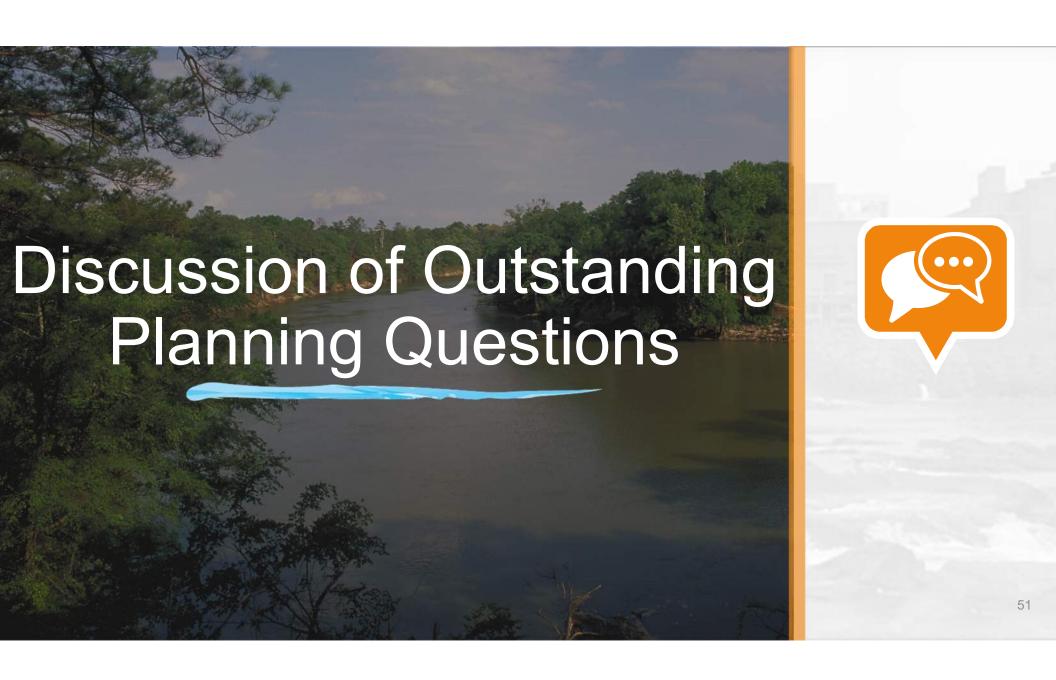
Section 3 Review

- Discussions of Water Control Manual language, which was updated and consolidated in Section 3
- EPD reviewed and suggested some edits
- Committee reviewed pages 3-16 to 3-23

Highlights of Edits in Section 3, pp. 3-16 to 23

- Updated impacts to recreation based on Final Environmental Impact Statement (p. 3-17)
- Added information on economic value of recreation for West Point Lake (p. 3-17)
- Referred discussion of Fish and Wildlife Impacts and Water Quality Impacts to Water Quality Committee (pp. 3-18 to 3-21)
- Added information on impacts to rare species and hydropower generation on pages 3-19 and 3-20
- Reviewed and updated Council's goals for an improve operating plan for the ACF (p. 3-23)

Flood Control Impacts p. 3-21 Reservoir Operations and River Flow Impacts p. 3-22


Added discussion of real-time and probability-based forecasts:

The State requested that the USACE incorporate into the WCM the use of real-time and probability-based forecasts to support flexible storage management practices for West Point Lake. The Council supports this approach that it believes can support better economic benefits for the region while also providing for flood risk management

Related change in Management Practice IU-2 (Section 6):

A GAEPD study demonstrated the use of probability-based forecasts to reduce peak releases without compromising flood mitigation operations. Cooperative efforts between the state and the U.S. Army Corps of Engineers should be funded and implemented to fully evaluate and support adoption of the proposed rule curve modifications.

Outstanding Items

- Wastewater Discharge Challenges
 - Text explaining a challenge is not considered substantial unless the percent age of time that the instream flow fell below the 7Q10 value is greater than 10% (Page 3-11 and 5-3)
- Table 6.1 Management Practices format changes
 - Includes details addressing responsible parties and implementation timeframes (short-term & long-term actions)
- Recommendation to the State #3 Has revisions to match committee's discussion and their comment letter submitted this past year to Metro District

Inter-Council Coordination

Coordinated Recommendations with Neighboring Councils

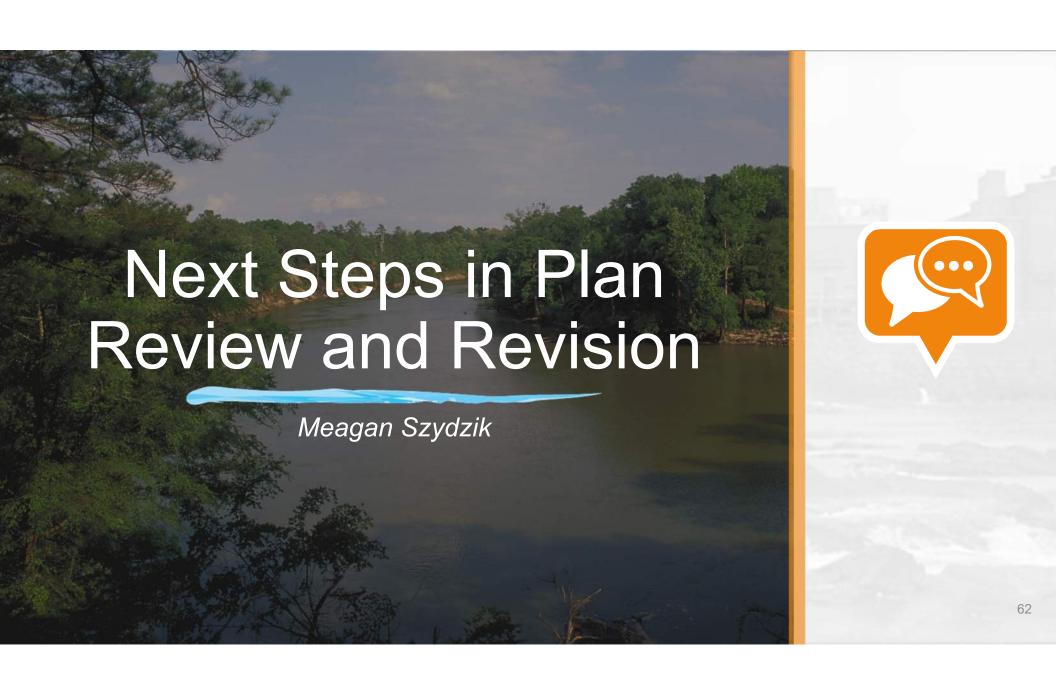
- ➤ JT-3: Recommend proactive engagement among Georgia, Alabama, and Florida to collaborate on opportunities to improve planning for shared water resources in the ACF Basin.
 - Pending review by LFO in March
 - Approved by MC & UF

Inter-Council Coordination

Coordinated Recommendations with Neighboring Councils

Previously deleted Recommendation addressing interstate coordination:

Consider the creation of a new coordinated, interstate planning organization for the ACF System. Membership in this organization to represent Georgia shall include, but not be limited to, members of the regional water planning councils with water planning regions that include parts of the ACF. Consider the recommendation of the ACF Stakeholders in its Sustainable Water Management Plan regarding an ACF transboundary water management institution as this organization is developed



Next Steps

- Next Meeting: <u>June 9th</u>, <u>2023</u>
 - Final Meeting for this Planning cycle (field trip?)
 - Incorporate comments from Council input and public review
 - Council approval of the Regional Water Plan for submission to EPD Director

