Coosa-North Georgia Regional Water Planning Council

November 3, 2021

Meeting Agenda

- Welcome and Introductions
- Agricultural Water Use Forecasts
- Seed Grant Updates
- EPD Updates
- Water and Wastewater Forecast Updates
- Metro Water District Update
- Lunch
- Forestry Presentation
- Wrap-up
- Public Comments

Coosa-North Georgia Region

GEORGIA WATER PLANNING

Coosa-North Georgia Regional Water Plan

COOSA-NORTH GEORGIA REGION

BACKGROUND

PLAN REVIEW PROCESS (2017)

SUMMARY OF 2017 RESOURCE ASSESSMENT

ATER AVAILABILITY: No new analysis of groundwat was conducted as part of the Regional Water Plan upda

mnessee liasin has potential gaps for land and Chickamange) but the gaps was only one potential on the gaps

E WATER QUALITY: The

June 2017

Introductions and Housekeeping

- Approve minutes from March 24, 2021 Council Meeting
- Approve today's meeting agenda

Coosa-North Georgia Region

Council's Vision:

Enhance the potential and quality of life for all communities through sustainable use of water resources in the region and state with partnerships among a broad spectrum of stakeholders.

Coosa-North Georgia Region

Council's Goals

- 1. Plan for appropriate levels of water storage, water sources, and long-term supply to meet anticipated need for local communities.
- 2. Minimize adverse effects to local communities and adjacent regions, and, when possible, enhance, natural systems.
- 3. Ensure that management practices support economic development and optimize existing water and wastewater infrastructure.
- 4. Promote alternative technologies that conserve, return, and recycle water; protect water quality; and ensure adequate capacity for water storage within the Coosa-North Georgia region.
- 5. Promote properly managed wastewater discharges.
- 6. Educate stakeholders in the region on the importance of water resources, including water conservation, efficiency, and pollution prevention.
- 7. Identify practices that reduce nonpoint source pollution and control stormwater to protect and enhance water quality and ecosystems in lakes and streams, particularly those in Priority Watersheds and listed streams.

Schedule of Upcoming Meetings

2022 Council Meetings (Locations TBD)

- February 23, 2022
- May 18, 2022
- September 21, 2022
- Q4 2022 (Date TBD)

Agricultural Water Use Forecasts

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Agricultural Water Use Forecast

- Mark Masters presentation
- Q&A

AGRICULTURAL WATER USE FORECAST

Coosa North Georgia Regional Water Planning Council November 3, 2021

> Mark Masters Albany State University Georgia Water Planning & Policy Center

Project Team

- Albany State University Georgia Water Planning and Policy Center (Lead)
- University of Georgia Agricultural and Applied Economics

2020-21 Agricultural Water Demand Forecasts - Methods

- Acreage Updated 2020 wetted acreage data
 - Field observation and aerial survey
- Crop projections through 2060 modeled based on multiple data sources:
 - Remote sensing and field data
 - USDA Projections, Southeast Model, Georgia Model, Data Trends
- **Crop water needs** wet, normal, dry years
 - Expanded use of meter data
 - Review estimates used in 2015-2016 and revise if needed
 - Surface water method revised to remove "70% assumption"

Animal Ag/Nursery

Animal Agriculture - Daily Water Use by Water Planning Region Statewide Total: 43.8 MGD

Daily Water Use by Horticultural Nurseries (Container, In-Ground, and Greenhouse), Millions of Gallons Per Day Statewide Total: 41.76 MGD - *draft*

Irrigated .	Acres
-------------	-------

County	2015	2020	
CATOOSA	169	169	
DAWSON	178	178	
FANNIN	202	202	
FLOYD	1,745	1,816	
GILMER	0	0	
GORDON	1,761	2,089	
HABERSHAM	273	273	
LUMPKIN	101	101	
MURRAY	300	300	
PICKENS	0	0	
POLK	0	0	
TOWNS	0	135	
UNION	48	48	
WALKER	0	0	
WHITE	0	0	
WHITFIELD	0	0	

Coosa-North Georgia RWPC

	2015	2020	% Change
Total # of Fields	135	143	+ 5.9%
Total Acreage	4,776	5,310	+ 11.2%
Total GW Acreage	0	0	0%
Total SW Acreage	4,776	5,310	+ 11.2%
Total Center Pivots	67	117	+ 74.6%
Center Pivot Acreage	2,828	4,272	+ 51.1%

Coosa North Georgia - Surface Water

Baseline Crop Mix by RWPC

Rotation areas assigned use values based on the crop mix percentage in the county. (e.g. the use on this pivot is x% corn, y% peanut, z% cotton, etc...). Areas with a static crop (pecans, orchard, etc...) were assigned water use values specific to that crop.

CNG Council – Ag Demand – 75th Percentile Round 1 (2011), Round 2 (2015) and Round 3 (2020)

Coosa-N. Georgia RWPC - Monthly

CNG – Ag Demand – Forecast – 75th Percentile Totals (2020 & 2060)

MGD (Annual Average)

Questions & Discussion

Mark H. Masters **Albany State University** Georgia Water Planning & Policy Center mmasters@h2opolicycenter.org 229-430-2900 x36

Seed Grant Updates

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Seed Grant Updates

- Latest Application
- 303d Project Update Erin Lincoln, Tetra Tech

Coosa-North Georgia 303(d) Listed Streams

Coosa North Georgia Regional Water Planning Council Meeting

Erin Lincoln, PH November 3, 2021

Thank You to our Supporters and Contributing Partners

Funding through an EPD 319 grant

Support from the Northwest Georgia Regional Commission and North Georgia Water Resources Partnership

Contributions from Hawks Environmental and CCR Environmental

Project Goal

Develop an impaired stream water quality assessment tool to guide private citizens, watershed groups, local governments, and the Council and Partnership in prioritizing and delisting impaired 303(d) listed streams in the Coosa-North GA region.

Coosa-North Georgia 303(d) Analysis

Project Activities and Tasks

- 303(d) Listed Streams Evaluation
 - Public data collection & assessment
 - Water Quality Listing Evaluation
- Prioritization Tool Development
 - Rate overall stream health
 - Prioritize streams for delisting/management efforts
- Water Quality Sampling Program
 - Collect water quality and biota data
 - Compare against prioritization tool results

303(d) Streams Evaluation

Coosa-North Georgia 303(d) Analysis
Water Quality Standards and Listing Circumstances

Fecal Coliform Assessment Key Findings

- 12 impaired streams partially or fully located in national forests/wilderness areas
- 5 impaired streams with contributing areas >90% forested/wetland
- 6 impaired streams had low fecal coliform concentrations past two years

Potential Causes in Forested Areas

TETRA TECH

Biota Fish Assessment Key Findings

- 21 impaired designated trout streams with contributing areas >90% forested/wetland
- 15 impaired designated trout streams partially or fully located in national forests/wilderness areas

ArcGIS StoryMap Coosa-North Georgia 303 (d) Listed Streams (arcgis.com)

Prioritization Tool Development

Prioritization Tool

- Assessed current 303(d) listed stream for fecal/biota impairments
- Stream Health Assessment
 - 25 factors and metrics to assess land use, human impacts, and water quality
 - Metrics scored using weighted average based on data quality and client concerns
 - Streams receive scores from 1 to 10, 10 being 'healthy'
- Prioritization Assessment
 - 7 prioritization metrics to assess opportunities for delisting of stream segments
 - Prioritized reaches with high restoration/preservation potential based on current health, watershed size, ecological significance, and funding opportunities
 - Metrics scored using weighted average based data quality and client concerns
 - Streams receive scores from 1 to 10, 10 being 'high priority'

Coosa-North Georgia Stream Health and Stream Prioritization Tool

This spreadsheet tool should be used in tandem with the Stream Health and Prioritization Process Guidance Document

	Spreadsheet Tool Tab Descriptions
Tool Results	Provides the Stream Health Score and Prioritization Score, with scores ranging from 1 to 10. For stream health, higher scores indicate a relatively healthier stream. For prioritization, higher scores indicate the stream should be targeted for remediation.
Stream Health Metrics	The metric categories, scores, and score weighting are pre-set in this worksheet, along with descriptions of each metric is used to identify stream health characterization (ranging from extremely developed to undisturbed) and stream health prioritization (ranging from lowest to highest priority). User can change metric scores and weighting in this tab.
Stream Prioritization Metrics	The metric categories, scores, and score weighting are pre-set in this worksheet, along with descriptions of each metric is used to identify stream mitigation prioritization (ranging from lowest to highest priority). User can change metric scores and weighting in this tab.
Imported Stream Data	The processed spatial and report data for each metric by stream. User can update or input new data in this tab.
Data Source	The date of each data source for metrics at the time of the analysis. This will make it clear when updates may be required for stream analyses when updated GIS files or additional data become available at a later date. User should update data source documentation when new data is input into Imported Stream Data tab.
Interim Processing Scores	Shows the scores for each stream and each metric that are used to calculate the overall scores.

Tool Descriptions and How To							
Clear Content	Press this button to clear all contents for a new run. Note that the StreamHealthMetrics, PrioritizationMetrics, DataSource, and ImportedStreamData tabs remain unaffected by this.						
Results	Press this button to display the results. The results can be viewed in the "ToolResults" worksheet.						

Stream Health Metrics

	Stream Health Metric	s								
Negatively Impacting Streams; High Value = Low Score = More degraded										
Metric	Metric Comment	Metric Value	Metric Score	Score Weight (Fecal Coliform)	Score Weight (Aquatic Biota)	Metric				
1		3%	1				5 1 H 1 - 0 H 0 - (
imperviousness (percent	Indicator of development in a watershed and is correlated to watershed degradation through higher runoff and stream erosion	1%	5	High	High	existing BIVIPS (count in				
arcay	watershed degradation through higher ranon and stream crosion	< 1%	10			uramage area)				
Residential/Urban Land	Indicator of population, stress to the watershed, and relative lack	9%	1		Contract of the local	Forested Land Lise				
(percent area)	of open space; residential areas can be a source of pollutants	5%	5	High	High	(percent area)				
(percent area)	due to fertilizer application, pets, and trash	< 5%	10	-		Abereeneereel				
Human Population (count	Correlates to higher sanitary or septic loads, higher chance for	0.15	1			Wilderness /National				
per acre drainage area)	spills, higher chance for illicit discharges, and higher water	0.07	5	Low	Low	Forest Area (percent area				
per acre aramage area,	quality pollutant loads	< 0.07	10			foreserved (percent dree				
NPDES Dischargers (count	Point sources that discharge putrients and/or pollutants to the	2	1							
in drainage area)	watershed may cause additional disturbance to watershed health	0	5	Low	Low.	Wetlands (percent area)				
		< 0	10							
Sentic Systems (count per	Indicator of potential human fecal or nutrient loading; however,	0.10	1	Med	Med	Piparian Areas (percent				
acre drainare area)	cannot determine if systems are maintained and functioning	0.05	5			linear stream area)				
acte anantage area,	properly	< 0.05	10							
Land/Biosolid Application Systems/Ag Lagoons (count	Municipal LAS, biosolid applications, and agricultural lagoons may contribute fecal and nutrient loads to local waterways	1	1	Med	Med	Fich Biolomy Data				
in drainage area)		0	10			Analysis (most recent IBI				
low Crop Land Use (percent	Indicator or potential nutrient (fertilizer application) loading,	1%	1		0.0803.040					
area)	and erosion from agricultural land could contribute sediment to	0%	5	High	High					
	streams	< 0%	10							
Agriculture/Pasture Land	Indicator or potential nutrient (fertilizer application) and fecal	15%	1		0.000					
Use (percent area)	(livestock) loading the rural nature of a watershed, and erosion	10%	5	High	High					
	from sites could contribute sediment to streams	< 10%	10							
Poultry houses/land	Common practice to use poultry litter to fertilize fields and	3	1		1000 State					
application of litter (count	pastures. May contribute to fecal depending on volume of	0	5	Med	Med					
in drainage area)	application and proximity to waterways.	< 0	10							
Deer/Hog Density (count	Estimated wildlife density related to fecal inputs to local	0.05	1							
per acre drainage area)	waterways	0.02	5	Med	Med					
		< 0.02	10							
Dispersed Campsites in	Dispersed campsites do not have restroom facilities and could be	5	1		10000 M					
Stream Healt	hMatrice Prioritization Matrice Imported Str	amData	DataSource	Interimp	rocessingSco					

	Stream Health Metri	cs							
	Positively Impacting Streams; High Value = High Score = Less degraded								
Metric	Metric Comment	Metric Value	Metric Score	Score Weight (Fecal Coliform)	Score Weight (Aquatic Biota)				
Eviating RMDs (south is	Existing BMPs may reduce storm flow, sediment, and bacteria	10	10						
drainage area)	from entering streams; however, this does not evaluate treated	5	5	Low	Low				
uramage area)	area and cannot determine if BMPs are functioning as designed	< 5	1						
Frankel Land Har		80%	10	High					
(percent area)	stormwater control and prevent erosion	60%	5		High				
		< 60%	1						
Milden and Making I	Generally undeveloped land should improve water quality; however higher wildlife population could contribute more fecal matter	50%	10	High					
Wilderness/National		20%	5		High				
rorest Area (percent area)		< 20%	1						
	Wetlands can act as nutrient sinks and retain floodwater, improving overall water quality; however higher waterfowl population could contribute more fecal matter	5%	10	Med					
Wetlands (percent area)		2.5%	5		Med				
		< 2.5%	1						
	Riparian forests filter pollution and prevent erosion; however,	75%	10						
Riparian Areas (percent	rills/gullies in buffered areas allow stormwater flow to directly	50%	5	High	High				
intear stream area)	enter stream and cause erosion in localized areas	< 50%	1						
		44	10						
Fish Biology Data	Instream aquatic biology data can be used to identify poor waterways conditions for potential remediation	42	7.5	High	High				
Analysis (most recent ibi)		32	2.5						
		< 32	1						

Prioritization Metrics

Stream Prioritization Metrics								
High Value = High Score = Higher Prioritization								
Metric	Metric Comment	Metric Value	Metric Score	Score Weight				
	Depending on goals, can prioritize streams that are almost healthy to	7	10					
Stream Health Score	try to delist or prioritize very unhealthy streams to make them more	5	5	High				
	healthy	< 5	1					
MSA area (percent of	Indicator of potential opportunities receive funding for BMPs by	5%	10					
drainage area)	partnering with MS4 that is required to address TMDL	0%	5	High				
		< 0%	1					
Euturo Dovolopment Areas	Prioritize streams where development is expected to occur to prevent	1%	10					
(percent of drainage area)	further degradation	0%	5	Low				
(F=====================================		< 0%	1					
Trout Stream Designation	Prioritize trout streams	Yes	10	Med				
Thou of cam besignation		No	1	Wed				
Number of Impaired	Will be more difficult to improve stream health if upstream areas are	0	10					
Unstream Segments	also impaired: would require a larger project	2	5	High				
		> 2	1					
	May be less expensive to improve water quality in smaller watershed	2500	10					
Drainage Area Size	by targeted known causes of impairment	15000	5	Med				
	-,	> 15000	1					
DNR Element Occurrence of		0.5	10					
Sensitive Species (count per	Prioritize streams that are considered significant to biodiversity due	0.2	5	Med				
acre drainage area)	to native wildlife species and natural habitats	< 0.2	1					

Stream Health/Prioritization Results

Stream Name/ID				Stream Health Score (Fecal Coliform)		Stream Prioritization Score (Feral Coliform)	Stream Prioritization Score (Aquatic Biota)
	v	v roanne 🔍	▼				
GAR031501020409	Flat Cr	reek Gi	ilmer	4.71	4.36	5.31	5.31
GAR031501020105	Tickan	etly Creek Gi	ilmer	7.42	7.06	3.38	3.38
GAR031501010305	Mill C	reek W	/hitfield	4.02	3.71	5.13	5.13
GAR031300010205	Hazel	Creek Ha	abersham	4.00	3.77	3.75	3.75
GAR031501020410	Fir Cre	ek Gi	ilmer	7.11	7.11	4.13	4.13
GAR031501010205	Conas	auga River M	lurray, Whitfield	4.96	4.77	3.44	3.44
GAR060200020512	Young	cane Creek Ur	nion	5.18	4.99	4.56	5.50
GAR031501040504	Sharp	Mountain Creek Pi	ickens	5.26	4.86	4.06	5.00
GAR031501020101	Carteo	ay River Gi	ilmer	6.18	5.77	2.50	2.50
GAR031501020209	Board	town Creek Fa	annin, Gilmer	7.09	6.83	3.88	4.63
GAR060200020511	Wolf (Creek Ur	nion	7.55	7.43	4.50	4.50
GAR031501010502	Conas	auga River W	/hitfield, Murray	3.04	2.73	5.13	5.13
GAR031300010311	Mud C	ireek Ha	abersham, Hall	4.02	3.82	4.69	4.69
GAR031501020104	Clear	Creek Pi	ickens, Gilmer	7.51	7.30	3.63	3.63
GAR031501030501	Armuc	hee Creek Flo	loyd	5.93	5.48	3.25	3.25
GAR060200010707	Cat Cr	eek Ca	atoosa, Whitfield	5.23	5.45	4.88	4.88
GAR060200010713	Tribut	ary #2 to Little Chickama Ca	atoosa	4.38	4.40	6.44	6.44
GAR031501050211	Horse	leg Creek Flo	loyd	5.17	5.00	6.38	7.31
GAR031501030502	Laven	dar Creek Flo	loyd	7.66	7.43	3.63	3.63
GAR060200010704	Little (Chickamauga Creek Ca	atoosa	4.38	3.98	4.81	4.81
GAR031501030111	Oothk	alooga Creek Ba	artow, Gordon	3.98	3.69	3.75	3.75
GAR031501020811	Coosa	wattee River Go	ordon	4.94	4.60	3.44	3.44
GAR060200010702	East C	hickamauga Creek W	/hitfield, Catoosa	4.67	4.33	4.94	4.94
GAR060200011015	Chatta	nooga Creek W	Valker	4.51	4.10	5.88	5.88
GAR060200030123	Coope	r Creek Ur	nion	7.33	7.11	4.50	4.50
GAR060200010927	Peavir	ne Creek W	Valker	4.29	4.21	4.69	4.69
GAR031501020205	0205 Big Turniptown Creek Gilmer		7.36	7.09	3.88	3.88	
GAR031501040108	40108 Tributary to Etowah River Lumpkin		umpkin	6.04	6.21	6.13	6.13
GAR060200020503	Lower	Youngcane Creek Ur	nion	5.05	5.29	5.81	5.81
Info	ToolResults	StreamHealthMetrics	PrioritizationMetrics	ImportedStreamData DataSource	Interim (+) ; (+)		

Stream Health/Prioritization Results

Coosa-North Georgia 303(d) Analysis

TETRA TECH

Interim Stream Health/Prioritization Results

1	А	В	C	D	E	F	G	Н	1	J	К	L	М	Ν	
1	Stream Name/ID	Imperviousness (percent area)	Residential/Urban Land (percent area)	Human Population (count per acre drainage area)	NPDES Dischargers (count in drainage area)	Septic Systems (count per acre drainage area)	Land Application Systems (count per drainage area)	Row Crop Land Use (percent area)	Agriculture/Pasture Land Use (percent area)	Poultry houses/land application of litter (count per acre drainage area)	Deer/Hog Density (count per acre drainage area)	Dispersed Campsites in Forested Area (count in drainage area)	Trails/Human Use in Forested Area (miles per drainage area)	Dirt Road Crossings (count per mile)	Co Area Wa
2	Corresponding Weights (Fecal Coliform)	3	3	1	1	2	2	3	3	2	2	2	1	2	
3	Corresponding Weights (Aquatic Biota)	3	3	1	1	2	2	3	3	2	2	2	1	2	
4	GAR031501020409	5	5 1	1	10	5	10	5	1	1		10	10	10	J
5	GAR031501020105	10	10	10	10	10	10	5	10	1	5	i 10	5	1	1
6	GAR031501010305	1	1 1	1	5	1	10	5	10	0	.5	i 10	5	10)
7	GAR031300010205	1	l 1	1	1	1	10	5	1	1	5	i 10	10	10	J
8	GAR031501020410	10) 5	1	10	5	10	10	10	10	5	i 10	10	10	J
9	GAR031501010205	10	0 10	5	5	10	10	1	5	0	5	i 1	1	10	J
10	GAR060200020512	10	5	5	10	5	10	5	1	0	. 5	i 5	1	10	3
11	GAR031501040504	1	۱ 1	1	10	1	10	5	5	1	5 .5	i 10	10	10	3
12	GAR031501020101	10	5	5	5	10	10	5	10	1	- 5	i 10	5	10	J
13	GAR031501020209	10) 10	5	10	10	10	5	10	10	.5	i 10	5	10	J
14	GAR060200020511	10	0 10	10	5	10	10	10	10	0	:5	i 1	1	. 1	L
15	GAR031501010502	5	5 1	1	1	5	1	1	1	0	5	i 1	1	10	J
16	GAR031300010311	1	L 1	1	5	1	10	5	1	1	5	i 10	10	10	۱ د
17	GAR031501020104	10	5	5	10	10	10	5	10	1	5	i 10	10	10	3
18	GAR031501030501	10	10	10	1	10	10	1	5	0	5	i 10	1	10	3
19	GAR060200010707	10) <mark>5</mark>	5	10	10	10	1	1	0	10	10	10	10	3
20	GAR060200010713	5	5 1	1	10	5	10	1	1	0	10	10	10	10)
21	GAR031501050211	1	l 1	1	10	1	10	10	10	0	10	10	10	10	3
22	GAR031501030502	10	10	10	5	10	10	10	10	0	.5	10	10	10	2
23	GAR060200010704	5	5 1	1	10	5	10	5	1	0	10) 10	10	10	J
24	GAR031501030111	1	1 1	1	1	1	10	1	1	0	10	10	10	10	c
25	GAR031501020811	10	5	5	1	5	1	5	10	1	5	5	1	10)
26	GAR060200010702	5	5 5	1	10	10	10	5	1	0	5	10	1	10	3
27	GAR060200011015	5	5 1	1	10	1	10	5	5	0	5	i 10	10	10	c
28	GAR060200030123	10	10	10	10	10	10	5	10	0	5	i 1	1	1	1
29	GAR060200010927	5	i 1	1	10	5	10	1	1	0	5	10	10	10	c l
30	GAR031501020205	10	5	5	10	5	10	10	10	10	.5	i 10	10	10	2
31	GAR031501040108	10) 1	1	10	1	10	10	10	1	.5	i 10	10	10	J
32	GAR060200020503	5	5 1	1	10	1	10	5	1	0	10	10	10	10	J
	StreamHealth	Metrics Prio	ritizationMetrics	ImportedStream	nData DataSo	urce InterimPr	ocessingScores	+ :	1	1.					Þ

Coosa-North Georgia 303(d) Analysis

Water Quality and Biota Sampling

GAEPD Sampling and Quality Assurance Plan

Initial Recommended Bacteria Sampling Locations

- Nottely River (2 reaches)
 - High stream health and prioritization scores
 - Watershed partially located in national forest/wilderness areas
 - Dominated by forested land uses
 - No upstream fecal coliform impairments
- GAEPD sampled both impaired Nottely River reaches in 2020
 - Upstream reach will be delisted
 - Downstream reach still impaired

Bacteria Sampling Locations

- Ninetynine Branch, Little Amicalola Creek, Amicalola Creek (2 reaches), Etowah River
 - Generally high stream health and prioritization scores
 - Dominated by forested land uses
 - Previous summer Etowah WSA bacteria data from Etowah River and Amicalola Creek met WQ standards
- GAEPD sampling Ninetynine Branch and one Amicalola Creek reach in 2021
- Tetra Tech Team sampling Little Amicalola Creek, Amicalola Creek (1 reach), and Etowah River in 2021

Fish Biota Sampling Locations

- Wolf Creek and Helton Creek
 - High stream health and prioritization scores
 - Small upstream drainage areas
 - Designated trout streams
 - Watersheds partially located in national forest/wilderness areas
 - Dominated by forested land uses

Sampling Rainfall Conditions

- Amicola Creek USGS 02390000
- July 7 August 6
 - Rainfall 23 of 31 days
 - Total rainfall 6.81 inches
- Etowah River USGS 02390050
- July 7 August 6
 - Rainfall 23 of 31 days
 - Total rainfall 6.68 inches

- Amicola Creek USGS 02390000
- October 1 October 31
 - Rainfall 15 of 31 days
 - Total rainfall 5.5 inches
- Etowah River USGS 02390050
- October 1 October 31
 - Rainfall 13 of 31 days
 - Total rainfall 6.4 inches

Initial Bacteria Sampling Results

Month	Fecal Coliform Water Quality Standard
May - Oct.	30-day geometric mean 200 count/100 mL of fecal coliform Non-human, rivers/streams 500 counts/100 mL fecal coliform
Nov April	30-day geometric mean 1000 counts/100 mL of fecal coliform Max 4000 counts/100 mL of fecal coliform

	Fecal Coliform Geometric Mean (col/100 m						
Stream	July	October					
Little Amicalola Creek	317	82					
Amicalola Creek	1,002	82					
Etowah River	808	185					

Next Steps

- Collect January and March bacteria geometric mean samples
- Calculate fish index of biotic integrity scores
- Compare data with state standards
- Validate scoring used in the prioritization tool and determine if any changes should be made to the tool
- Recommend actions that could be taken to improve water quality
- Final report summarizing results and recommendations

Questions?

Erin Lincoln, PH erin.lincoln@tetratech.com

Natalie Postel, PE natalie.postel@tetratech.com

Planning Updates from Georgia EPD

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Regional Water Plan Update Process

- Coordinated with the Metro Water District
- Process began in 2020 with Forecasting work
- Target for updated Plans by end of 2022
 - Draft Plans on public notice by Sept. 30, 2022
 - Updated Plans completed by Dec. 2022
- Technical work completed/ongoing that underlies the Regional Water Plans
- Quarterly Council Meetings

Regional Water Plan Review and Revision Process

The 5-Year Review Process will focus on:

- Updated water demand and wastewater forecasts
- Update Surface Water and Ground Water Availability Resource Assessments (Quantity)
- Updated Surface Water Quality Availability Resource Assessment
- Refine Management Practices, if needed, to address water resource

Regional Water Planning Councils

Surface Water Resource Assessments

- Updates to Surface Water Availability Resource Assessment
 - New modeling tool: Basin Environmental Assessment Model ("BEAM")
 - Provides analysis at more nodes

GEORGIA WATER PLANNING

Surface Water Resource Assessments

- •Updates to Surface Water Quality (Assimilative Capacity) Resource Assessment
 - •Updated information & model recalibration

Groundwater Resources in Georgia

Groundwater Aquifers

GEORGIA WATER PLANNING

- Refined groundwater model with smaller grid spacing and transient pumping in the Coastal Plain (multiple aquifer layers)
- Will compare updated forecasts to existing sustainable yield estimates in northern Georgia

Groundwater Resources in Georgia

Crystalline Rock Aquifer Study Basins: Water Budget Modeling Approach

Paleozoic Rock Aquifer Study Basin: Numerical Groundwater Flow Model

Range of Sustainable Yield

GEORGIA WATER PLANNING Christine Voudy Georgia Environmental Protection Division (470) 607-2621 <u>christine.voudy@dnr.ga.gov</u>

Water and Wastewater Demand Forecasting

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Industrial Water Demand Forecasting

- Industrial Forecasting Stakeholder Group
 - Initial stakeholder meeting held on June 3, and final stakeholder meeting held on November 13, 2020
 - Developed subgroups by major sectors to further inform data and methodology:
 - Poultry & Food Processing
 - Mining
 - Paper and Forest Products
 - Manufacturing

Industrial Water Demand Forecasting (Cont'd)

Participating Industrial Stakeholders:

- Industry Trade Groups:
 - Georgia Poultry Federation
 - Georgia Mining Association
 - Georgia Paper and Forest Products Association
 - Georgia Association of Manufacturers
 - Georgia Chemistry Council
- Governor's Office of Planning and Budget
- Georgia Department of Economic Development
- Georgia Tech Research Institute

- Representatives from a cross-section of industries, including:
 - International Paper
 - Mohawk Industries
 - Gulfstream
 - BASF
 - KIA Motors
 - Rayonier Performance Fibers
 - Packaging Corp. of America

Industrial Water Demand Forecasting

Survey Questions:

- Average Water Use
- Water Sources
- Municipal Customer
- Average
- Discharge
- Receiving Bodies
- Municipal WW
 Customer
- Anticipated changes in next 5

 10 years

Water demands should stay constant (on an annual avg. basis) due to conservation/ efficiency efforts

GEORGIA

WATER PLANNING

Forecast no longer relies upon employment projections

Three of the sub-sector groups conducted surveys to inform the best approach to estimating future water demand:

- Georgia Poultry Federation survey of membership with assistance from Georgia Tech Research Institute
- Georgia Mining Association survey of membership
- Georgia Association of Manufacturers survey of membership

The Paper and Forest Products group developed recommendations for estimating future water demand for their sub-sector.

Modest growth in water demands

Industrial Water Demand Forecasting

Planning Region	Sub-sector	2020	2030	2040	2050	2060
0	Sub Sector	MGD	MGD	MGD	MGD	MGD
Coosa - North Georgia	Food	2.94	3.43	4.14	4.55	4.79
	Manufacturing	11.52	11.52	<mark>11.5</mark> 2	<mark>11.52</mark>	11.52
	Mining	4.30	4.30	4.30	4.30	4.30
	Paper	23.72	23.72	23.72	23.72	23.72
	Total	42.48	42.97	43.68	44.09	44.32

Final report posted on Water Planning website:

https://waterplanning.georgia.gov/forecasting/industrial-water-use

Industrial Water Demand Forecasting

GEORGIA

Energy Water Demand Forecasting

- Stakeholders provide input on the methodology to estimate future water demand for thermoelectric power generation and statewide energy generation
- Factors evaluated:

GEORGIA WATER PLANNING

- List of thermoelectric facilities
- Forecasts for water withdrawal and consumption by facility
- Other available data

Energy Water Demand Forecasting (Cont'd)

Stakeholder group includes representatives from:

- Georgia Power / Southern Company
- Municipal Electric Authority of Georgia (MEAG)
- Oglethorpe Power Corporation
- Dalton Utilities
- Georgia Public Service Commission
- Georgia Environmental Finance Authority

Energy Forecasting – Looking back...

Step 1: How Much Power will Georgia Need?

Energy Forecasting – Estimated Power Generation

Energy Water Demand Forecasting

Thermoelectric Energy Water Demand Forecast

Statewide (MGD)	2020	2030	2040	2050	2060
Withdrawals	383	487	354	360	367
Consumption	235	301	242	247	253

Coosa-North Georgia	2020	2030	2040	2050	2060
Withdrawals - High Demand Scenario	4.29	4.29	6.55	7.21	7.87
Withdrawals - Expected Demand Scenario	4.29	4.29	5.65	6.25	6.85
Consumption - High Demand Scenario	3.78	3.78	5.77	6.34	6.92
Consumption - Expected Demand Scenario	3.78	3.78	4.97	5.50	6.03

https://waterplanning.georgia.gov/forecasting/energy-water-use

Water Demand Forecasting – Municipal

- Black & Veatch/Jacobs planning contractor team preparing water demand forecasts for this sector
- Municipal Forecasting Stakeholder Group
 - Includes one representative from each Council & the Metro Water District (Brooke Anderson represented Coosa-North Georgia Council)
 - Initial Stakeholder Meeting held on April 16, 2020
 - Reviewed methodology and initial data collection
 - Second Stakeholder Meeting held on June 3, 2020
 - Reviewed draft forecast results
 - Final Stakeholder Meeting held on February 2, 2021
 - Presented revised forecasting results
- Information collected from Industrial forecasting efforts were incorporated into this forecast (municipally-supplied industries)
- Information about county-to-county transfers were incorporated for source modeling.
- Report has been finalized and is posted to website

GEORGIA WATER PLANNING

Municipal Water Demands

GEORGIA WATER PLANNING

Municipal Water Demands

		Projected Need per Yr per County and Source (AADD-M					
County	Source	2020	2030	2040	2050	2060	
	Surface Water	6.59	6.89	6.65	6.21	5.67	
Catoosa	Groundwater	-		-	-	-	
	Self-Supplied	0.25	0.26	0.25	0.23	0.21	
	Surface Water	2.22	2.23	2.20	2.15	2.12	
Chattooga	Groundwater	1.06	1.06	1.05	1.03	1.01	
	Self-Supplied	0.09	0.09	0.09	0.09	0.08	
	Surface Water	2.06	2.03	1.96	1.88	1.83	
Dade	Groundwater	0.08	0.08	0.08	0.07	0.07	
	Self-Supplied	-	-		-	-	
	Surface Water	1.85	2.79	3.64	4.60	5.87	
Dawson	Groundwater	0.21	0.31	0.41	0.52	0.66	
	Self-Supplied	0.58	0.49	0.40	0.32	0.24	
Fannin	Surface Water	1.86	1.86	1.62	1.35	1.18	
	Groundwater	0.09	0.09	0.07	0.06	0.05	
	Self-Supplied	0.76	0.76	0.65	0.54	0.47	
	Surface Water	11.35	11.69	11.08	10.22	9.34	
Floyd	Groundwater	0.84	0.87	0.82	0.76	0.69	
	Self-Supplied	0.39	0.39	0.37	0.33	0.30	
	Surface Water	2.89	3.03	3.09	3.04	2.99	
Gilmer	Groundwater	-	-	-	-	-	
	Self-Supplied	1.23	1.26	1.14	1.01	0.92	
	Surface Water	7.88	8.24	8.47	8.60	8.71	
Gordon	Groundwater	2.07	2.16	2.23	2.26	2.29	
	Self-Supplied	0.17	0.18	0.18	0.18	0.18	
	Surface Water	5.39	5.99	6.61	7.07	7.49	
Habersham	Groundwater	0.82	0.92	1.01	1.08	1.14	
	Self-Supplied	0.62	0.59	0.57	0.54	0.51	
	Surface Water	1.39	2.05	2.64	3.24	3.98	
Catoosa Chattooga Dade Dawson Fannin Floyd Gilmer Gordon Habersham Lumpkin	Groundwater	0.27	0.39	0.50	0.62	0.76	
	Self-Supplied	1.85	1.81	1.76	1.72	1.68	

Municipal Water Demands

		Projected	Need per Yr	per County a	nd Source (AA	DD-MGD)
	Surface Water	1.74	1.80	1.85	1.87	1.90
Murray	Groundwater	1.46	1.51	1.55	1.57	1.60
	Self-Supplied	0.75	0.73	0.71	0.69	0.67
	Surface Water	2.38	2.79	2.92	3.01	3.16
Pickens	Groundwater	1.41	1.66	1.74	1.79	1.88
	Self-Supplied	0.40	0.39	0.38	0.37	0.36
	Surface Water	4.14	4.27	4.18	3.97	3.72
Polk	Groundwater	1.77	1.83	1.79	1.70	1.59
	Self-Supplied	0.10	0.10	0.09	0.08	0.07
	Surface Water	1.27	1.39	1.56	1.83	2.21
Towns	Groundwater	0.19	0.20	0.23	0.27	0.32
	Self-Supplied	0.14	0.15	0.17	0.20	0.24
	Surface Water	1.48	1.73	1.81	1.89	2.07
Union	Groundwater	0.46	0.54	0.56	0.59	0.65
	Self-Supplied	0.03	0.03	0.03	0.03	0.04
	Surface Water	1.28	1.28	1.26	1.24	1.23
Walker	Groundwater	5.80	5.78	5.72	5.62	5.59
	Self-Supplied	0.50	0.49	0.48	0.46	0.45
	Surface Water	1.10	1.33	1.47	1.62	1.81
White	Groundwater	0.94	1.13	1.25	1.38	1.54
	Self-Supplied	1.18	1.41	1.55	1.69	1.87
	Surface Water	26.69	27.30	27.70	27.69	27.50
Whitfield	Groundwater	-	-	-	-	-
	Self-Supplied	0.37	0.37	0.37	0.36	0.35

Municipal Wastewater Demands

GEORGIA WATER PLANNING

Municipal Wastewater Demands

County	Source	2030	2040	2050	2060		County	Source
Catoosa County	Point Source	0.01	0.01	0.01	0.01		Murray County	Point Source
	LAS	0.00	0.00	0.00	0.00			LAS
	Septic	2.97	2.93	2.81	2.63		County Murray County Pickens County Polk County Union County Walker County White County White County Total	Septic
Chattooga County	Point Source	5.84	5.89	5.88	5.93		Pickens County	Point Source
	LAS	0.03	0.03	0.03	0.03		·····,	LAS
	Septic	0.99	0.99	0.99	1.00		Murray County Pickens County Polk County Union County Walker County White County White County Total	Sentic
Dade County	Point Source	0.48	0.47	0.46	0.46		Dalla Causta	Deint Source
	LAS	0.00	0.00	0.00	0.00		Polk County	Point Source
	Septic	0.80	0.79	0.77	0.77		Pickens County Polk County Towns County Union County Walker County White County White County	LAS
Dawson County	Point Source	0.00	0.00	0.00	0.00			Septic
	LAS	0.84	1.09	1.40	1.84		Towns County Union County	Point Source
	Septic	1.78	2.16	2.61	3.22			LAS
Fannin County	Point Source	0.40	0.35	0.30	0.26			Septic
	LAS	0.00	0.00	0.00	0.00		Union County Walker County	Point Source
	Septic	1.36	1.20	1.01	0.90			LAS
Floyd County	Point Source	5.91	5.74	5.41	5.07			Septic
	LAS	0.00	0.00	0.00	0.00			Point Source
	Septic	2.83	2.75	2.59	2.43			LAS
Gilmer County	Point Source	1.75	1.70	1.63	1.59			Septic
	LAS	0.00	0.00	0.00	0.00		White County	Point Source
	Septic	1.73	1.60	1.45	1.35		white county	I AS
Gordon County	Point Source	5.84	6.08	6.25	6.42			LAS
	LAS	0.00	0.00	0.00	0.00			Septic
	Septic	2.62	2.73	2.80	2.88		Whitfield County	Point Source
Habersham	Point Source	4.45	4.88	5.31	5.78			LAS
County	LAS	0.01	0.01	0.02	0.02			Septic
	Septic	2.17	2.31	2.45	2.62		Total	Point Source
Lumpkin County	Point Source	0.88	0.98	1.08	1.20			LAS
	LAS	0.02	0.03	0.03	0.03			Septic

Murray County	Point Source	1.76	1.82	1.87	1.92
	LAS	0.00	0.00	0.00	0.00
	Septic	2.09	2.17	2.22	2.29
Pickens County	Point Source	0.87	0.92	0.95	1.01
	LAS	0.02	0.02	0.02	0.02
	Septic	2.03	2.13	2.22	2.34
Polk County	Point Source	3.51	3.46	3.34	3.19
	LAS	0.00	0.00	0.00	0.00
	Septic	2.00	1.96	1.85	1.72
Towns County	Point Source	0.42	0.48	0.57	0.70
	LAS	0.00	0.00	0.00	0.00
	Septic	0.73	0.83	0.99	1.21
Union County	Point Source	0.43	0.46	0.49	0.55
	LAS	0.00	0.00	0.00	0.00
	Septic	1.62	1.73	1.85	2.08
Walker County	Point Source	4.17	4.23	4.26	4.35
	LAS	0.00	0.00	0.00	0.00
	Septic	3.46	3.51	3.54	3.61
White County	Point Source	0.65	0.73	0.81	0.92
	LAS	0.03	0.04	0.04	0.05
	Septic	2.03	2.28	2.54	2.88
Whitfield County	Point Source	0.18	0.18	0.18	0.18
	LAS	11.18	11.42	11.51	11.54
	Septic	3.86	3.96	4.00	4.02
Total	Point Source	37.55	38.37	38.82	39.54
	LAS	12.14	12.64	13.05	13.53
	Septic	37.08	38.26	39.17	40.68

Metro Water District Update

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Metro Water District Update

Danny Johnson

2022 Plan Update Schedule

	Sep-20	Dec-20	Mar-21	Jun-21	Sep-21	Dec-21	Mar-22	Jun-22	Sep-22	Dec-22
Data Collection/Resource										
Forecasting										
Action Items Review and Update		•								
Appendix A - River Basin Profiles			•	_						
Appendix B - Facility Planning				+						
Stormwater Forecasting			+			-				
Supporting Efforts										
Localized Demands Drought Response Ontions Menu										
Watershed Resilience										
Full Draft Plan for Review								♦	•	
Public Comment									+	
EPD/Board Approval										+

Stormwater Forecasting Update

- Planning-level forecast based on total runoff volume at a watershed-scale
 - Support stormwater/ watershed planning
 - Compliment existing (non-district) regulatory requirements
- Timeline
 - July 20, 2021 Stormwater Watershed TCC
 - Early November Distribute County Level Fact Sheets
 - Late Early November Stormwater Watershed TCC

Concepts for Potential Action Item Updates -Efficient Technologies and Water Waste

Codes for New / Renovated Buildings to require More Efficient Technologies

- Plumbing Fixtures
- Landscape Irrigation System Design
- Water-Efficient Appliances
- HVAC Cooling Towers

Adjust Premise Plumbing Sizing Requirements to Account for Efficiency

Update Water Waste Model Ordinance

Concepts for Potential Action Item Updates-Beyond Mandatory Codes

Rebate Programs to promote leading efficient technologies – Smart Irrigation Controller rebate program – Smart Leak Detector rebate program

Promoting whole home water efficiency – HERS H2O Whole House Water Efficiency Rating

Thanks @GPBEducation for saving your special on Georgia's Water Exploration! We finally made some time in science to watch this It was fun to see all the aquatic places so close to us

...

7:35 PM · May 20, 2021 · Twitter for iPhone

79,300 live views!

Nearly 2,000 pageviews since 441 questions from students 1,247 pop quiz responses

Lunch

Council Member Meet and Greet

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING Forest and Water Connection: Maximizing Privately Owned Forests as a Solution to Safe and Abundant Water Supply

Robert Farris, Georgia Forestry Foundation

Coosa North Georgia Water Council

November 3, 2021

to ensure the long-term sustainability of Georgia's forests

by reconnecting youth and adults to the land

and by demonstrating working forests' <u>environmental</u>, <u>educational</u>, and <u>economic importance</u> to the state.

WORKING FORESTS

AN AT-SCALE SOLUTION TO OUR GREATEST CHALLENGES

GEORGIA FORESTRY AT A GLANCE

#1 IN PRIVATELY-OWNED TIMBERLAND with 22 million acres of commercially-available timber.¹

#1 IN ANNUAL HARVEST VOLUME while growth exceeds removals by 48%.²

#1 EXPORTER OF FOREST PRODUCTS leading the nation in the export of 21 commodities with an estimated trade value of \$3.9 billion.³

#1 IN WOOD HARVESTED FOR PINE PRODUCTION & PINE PULPWOOD PRODUCTION IN THE U.S. SOUTH*

#1 IN SEEDLING PRODUCTION FOR REFORESTATION⁵

"

From 1997 to 2060, the South is forecasted to lose between **11 to 23 million acres of forests**, nearly all to urban uses.

FORESTS & WATER

WHAT IS AT STAKE

↑ Urban Sprawl + ↓ Timber Prices = ↑ Forest Loss

Loss of forests means a loss of critical ecosystem services:

- Water Quality and Quantity
- Air Quality and Carbon Sequestration
- Wildlife Habitat
- Recreation and Aesthetics
- Soil Formation and Stability
- Pollination
- Human Health and Well Being

MAP SOURCE Southern Forest Futures Report, USDA Forest Service, Southern Research Station

WHAT IS AT STAKE

↓ Water Quality = ↑ Water Treatment Costs

Loss of clean water services from forests can lead to a drinking water emergency

- $\rightarrow\,$ Loss of natural filtration of precipitation and storm runoff
- → Increase in sediment and contaminants
- $\rightarrow\,$ Loss of stream flow moderation and increase in flooding impacts
- \rightarrow Increased soil erosion

MAP SOURCE Georgia: Now and Forever Georgia Conservancy

FORESTS & WATER

WHAT IS AT STAKE

↑ Forest Loss = ↓ Water Quality

Privately-owned forests serve as the greatest at-scale solution for water quality and quantity in Georgia

- 404 surface drinking water intakes
- 5,910,180 people
- 146 communities

MAP SOURCE Benefits of State and Private Forests for the South USDA Forest Service, Southern Research Station

67,900 miles of perennial and intermittent streams!

65% OF GEORGIA WATERSHEDS

FLOW THROUGH PRIVATELY-OWNED, WORKING FORESTS

SOURCE: GEORGIA FORESTRY COMMISSION

5.9 MILLION GEORGIANS 57% of the state's

total population!

DEPEND ON WATER FROM FORESTED WATERSHEDS

SOURCE: USDA FOREST SERVICE, SOUTHERN RESEARCH STATION

\$500,000 - \$6 BILLION IN SAVINGS

OBSERVED ACROSS SEVEN U.S. CITIES BY MAINTAINING HIGH QUALITY SOURCE WATER AND AVOIDING WATER TREATMENT COSTS THROUGH NATURAL INFRASTRUCTURE INVESTMENTS

SOURCE: WORLD RESOURCES INSTITUTE

FOREST & WATER INITIATIVE

Maximizing Water Quality Benefits Through a Voluntary, Landowner, Market Driven System

Establish a land conservation project within a selected watershed to provide a proactive, non-regulatory approach to protecting water quality in concert with forest landowners.

What is the role of a payment ecosystem services market?

Direct payments to landowners for the natural infrastructure they provide

LANDOWNERS

Increasing the value of your forestland investment

FORESTS HAVE ALWAYS CLEANED OUR WATER.

So, why does this project matter?

DIRECT INVESTMENTS IN FORESTS AS NATURAL INFRASTRUCTURE MAKES SENSE.

Keep Forests as Forests
 Maintain High Quality Source Water
 Reduce Water Treatment Costs

PRIORITY WATERSHEDS

- Threat to forest
- Threat to water
- Existing grassroots networks established
- Perceived greatest
 chance for success

FORESTS & WATER CONNECTION INITIATIVE

INITIATIVE OBJECTIVE

Identifying ecosystem service market structures that work for Georgia forest owners and water users.

INITIAL PROJECT REACH

347

TOTAL FORUM REGISTRANTS

LOWER SAVANNAH

- \rightarrow 37 Landowners
- \rightarrow 24 Water Professionals

MIDDLE CHATTAHOOCHEE

- → 53 Landowners
- \rightarrow 38 Water Professionals

UPPER OCONEE

- → 100 Landowners
- \rightarrow 33 Water Professionals

LOWER FLINT

- \rightarrow 36 Landowners
- \rightarrow 26 Water Professionals

Forum Findings

Landowners Top Concerns:

- Overcomplicated Agreements
- Restrictions on harvest or land use
- Dealing with the government

Water Professional Top Concerns: Identifying and / or convincing stakeholders of value

Dovetail Key Findings

Collaborate and share understanding

- Establish and leverage a strong collaboative team
- Establish support through regulatory structures and funding

Plan and invest capacity

- Do not underestimate resources needed to establish program
- Establish a long-term, sustainable funding strategy

Follow the science

- Leverage the scientific foundation that exsists
- Additional research will strengthen the program

Geek out

 Include team members that can access and use technology availble to conduct modeling, mapping, and analysis

Know your watershed

- Understand your source water area
 Understand the threats to your landscape

Know your neighbor

- Sucess relies on the people; including willing landowners
- Understand interests of PES program and sellers

WHAT ARE ECOSYSTE **SERVICES** WORTH? FORESTS & WATER CONNECTION INITIATIVE

KEEPING FORESTS

NC STATE
UNIVERSITYCollege of
Natural ResourcesDepartment of Forestry & Environmental Resources

Quantifying forest benefits for water quantity and quality in the southern United States

- **Phase I:** Modeling to quantify forest water relationships
- Phase II: Estimate economic value
- Phase III: Share results

Partnership Progress

Keeping Forests: How the River Flows Podcasts / NC State Grant Middle Chattahoochee & Lower Savannah River
Savannah Clean River Fund: Mini-documentary / Alec / CPI & RPI
Southeastern Partnership for Forests & Water
Upper Oconee River Partnership
Outreach: GMFLA
GA Legislature Environmental Policy Academy
Georgia Association of Water Professionals
Georgia Rural Water Association
Institute for Environmental Leadership (IGEL)

FORESTSANDWATER.org domain

HOW CAN WE HELP YOU WITH YOUR SOURCE WATER PROTECTION PLANS?

Give us your feedback!

Become a Collaborator!

Join our growing list of collaborators, add your logo to our site at <u>www.forestsandwater.org</u>, and help us spread the word

CONTACT US

Robert Farris Georgia Forestry Foundation Farris@gffgrow.org

GEORGIA FORESTRY FOUNDATION

Discuss Council Vison, Goals, and MOA

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING **Discuss Council Vision, Goals and MOA**

- Vision
- Goals
- MOA (homework)

Coosa-North Georgia Region

Council's Vision:

Enhance the potential and quality of life for all communities through sustainable use of water resources in the region and state with partnerships among a broad spectrum of stakeholders.

Coosa-North Georgia Region

Council's Goals

- 1. Plan for appropriate levels of water storage, water sources, and long-term supply to meet anticipated need for local communities.
- 2. Minimize adverse effects to local communities and adjacent regions, and, when possible, enhance, natural systems.
- 3. Ensure that management practices support economic development and optimize existing water and wastewater infrastructure.
- 4. Promote alternative technologies that conserve, return, and recycle water; protect water quality; and ensure adequate capacity for water storage within the Coosa-North Georgia region.
- 5. Promote properly managed wastewater discharges.
- 6. Educate stakeholders in the region on the importance of water resources, including water conservation, efficiency, and pollution prevention.
- 7. Identify practices that reduce nonpoint source pollution and control stormwater to protect and enhance water quality and ecosystems in lakes and streams, particularly those in Priority Watersheds and listed streams.

Public Comments

Coosa-North Georgia Regional Water Planning Council

Please limit comments to 3 minutes total

Council encourages written submission of comments as well

GEORGIA WATER PLANNING

 \bigcirc

Coosa-North Georgia Regional Water Planning Council

GEORGIA WATER PLANNING

Next Steps

- Next Council Meeting
 - February 23, 2022, Location TBD
- Adjourn

Thank You Coosa-North Georgia

https://waterplanning.georgia.gov/water-planning-regions/coosa-north-georgia-water-planning-region

