Gap Analysis Technical Memorandum Suwannee-Satilla Regional Water Planning Council

Banks Lake, Lanier County

Supplemental Material

Suwannee-Satilla Regional Water Plan

May 2019

Banks Lake, Lanier County photo courtesy of the Georgia Department of Industry, Trade & Tourism

Table of Contents

Section 1 Introduction	1-1
Section 2 Water and Wastewater Forecast Overview	2-1
2.1 Water Demand Summary	
2.1.1 Groundwater Forecasts and Comparison to Groundwater Permits	
2.1.2 Surface Water Forecasts	
2.2 Wastewater Forecast Summary	
2.2.1 Comparing Wastewater Forecasts to Permitted Capacity	
Section 3 Groundwater Availability	3-1
3.1 Floridan Aquifer	
3.2 Cretaceous Aquifer	
3.3 Brunswick Aquifer	
3.4 Claiborne Aquifer	
Section 4 Surface Water Availability	4-1
4.1 Surface Water Planning Node Summary	
4.2 Detailed Potential Gap Analysis	4-3
4.2.1 Potential Gaps at the Atkinson Node	4-4
4.2.2 Potential Gaps at Jennings Node	
4.2.3 Potential Gaps at Pinetta Node	4-5
4.2.4 Potential Gaps at Statenville Node	4-6
Section 5 Surface Water Quality	5-1
5.1 Dissolved Oxygen Assimilative Capacity	5-1
5.2 Non-Point Source Pollution	5-4
5.3 Nutrient Loading	5-4
Section 6 Gap Analysis Summary	6-1

List of Figures

Figure 1-1: Suwannee-Satilla Council Boundary	1-1
Figure 2-1: Suwannee-Satilla Regional Water Forecast by Sector and Supply Source	2-1
Figure 2-2: Suwannee-Satilla Regional Wastewater Forecast by Discharge Method and Sector	2-3
Figure 3-1: Floridan Aquifer in South Central Georgia & Eastern Coastal Plain Forecasted	
Groundwater Demand	3-1
Figure 4-1: Potential Surface Water Gap Summary	4-2
Figure 5-1: Results of DO Assimilative Capacity Assessment at Permitted Conditions	5-2
Figure 5-2: Impaired Water Bodies	5-5
Figure 5-3: Total Nitrogen Loading for the Suwannee River Watershed during Wet Year Future	
(2050) Conditions	5-6
Figure 5-4: Total Phosphorus Loading for the Suwannee River Watershed during Wet Year Futur	re
(2050) Conditions	5-7

List of Tables

Table 2-1: Regional Groundwater Forecast by Aquifer (MGD)	2-2
Table 2-2: 2050 Municipal Forecast versus Groundwater Permitted Capacity	2-2
Table 2-3: 2050 Municipal Wastewater Forecast versus Existing Permitted Capacity (MGD)	2-4
Table 4-1: Characteristics of Modeled 2050 Potential Surface Water Gaps	4-3
Table 4-2: Potential Surface Water Gaps at Atkinson Node	4-4
Table 4-3: Atkinson Planning Node Surface Water Forecast and Summary of Potential Gaps by	
Region	4-4
Table 4-4: Potential Surface Water Gaps at Jennings Node	4-5
Table 4-5: Jennings Planning Node Surface Water Forecast and Summary of Potential Gaps by	
Region	
Table 4-6: Potential Surface Water Gaps at Pinetta Node	4-6
Table 4-7: Pinetta Planning Node Surface Water Forecast and Summary of Potential Gaps by Reg	ion
	4-6
Table 4-8: Potential Surface Water Gaps at Statenville Node	4-6
Table 4-9: Statenville Planning Node Surface Water Forecast and Summary of Potential Gaps by	
Region	4-7
Table 5-1: Permitted Assimilative Capacity for DO in the Suwannee-Satilla Region	5-1
Table 5-2: Stream Segments with No or Exceeded Assimilative Capacity under Current Permittee	t
Conditions	5-3
Table 6-1: Summary of Potential Water Resource Issues by County	6-1

Appendices

Appendix A: Forecasts verse Permitted Capacity by County

Introduction

In February 2008, the Georgia General Assembly adopted the Georgia Comprehensive State-wide Water Plan (Plan) dated January 8, 2008. The Plan established the Regional Planning process that was officially kicked off in March 2009. The Suwannee-Satilla Regional Water Planning Council (Suwannee-Satilla Council) is one of the 11 planning regions established throughout the state. The Suwannee-Satilla Council is charged with several tasks including: 1) reviewing and considering water and wastewater forecasts for the region through the year 2050 and resource assessment prepared by EPD; and 2) identification of management practices to help meet forecasted demands and address regional needs. The Suwannee-Satilla Council boundaries are shown in **Figure 1-1**.

Figure 1-1: Suwannee-Satilla Council Boundary

The purpose of this technical memorandum is to compare the water and wastewater demand forecasts to the available resources. Areas where future demands exceed the estimated capacity of the resource have a gap that may be addressed through water management practices as part of the larger regional water planning effort. This technical memorandum summarizes:

- Water and wastewater forecasts for regional surface and groundwater resources;
- Identification of known existing permit capacity in relationship to forecasts;

- Estimated sustainable yield of the prioritized aquifers used in the Suwannee-Satilla Region in relationship to forecasts;
- Estimated surface water availability in relationship to the forecasts while maintaining the instream flow regime; and
- Water quality considerations.

Water and Wastewater Forecast Overview

Water and wastewater forecasts have been developed beginning in 2015 and extending to 2050 for the 18 counties within the region. The major water and wastewater sectors include: municipal (domestic and commercial), industrial, agricultural, and energy (thermoelectric power production).

A brief summary is provided in this document, but for more detail concerning the forecast methodology and development please see the Water and Wastewater Forecasting Technical Memorandum for the Suwannee-Satilla Council.

2.1 Water Demand Summary

Figure 2-1 shows the aggregated county water forecasts for the Suwannee-Satilla Council region (the Suwannee-Satilla Region) in 2015 and 2050. Overall, the regional forecasted water need is expected to increase by 42.9 mgd. The forecasts are associated with a water source, either surface water (SW) shown in blue or groundwater (GW) shown in yellow/brown as well as the sector associated with the demand. The consumptive demand rather than total withdrawals from the energy sector are included. The agricultural demands represent dry year conditions (75th percentile demands). The alternate forecast is shown for the industrial sector, which includes an additional 5 MGD of growth.

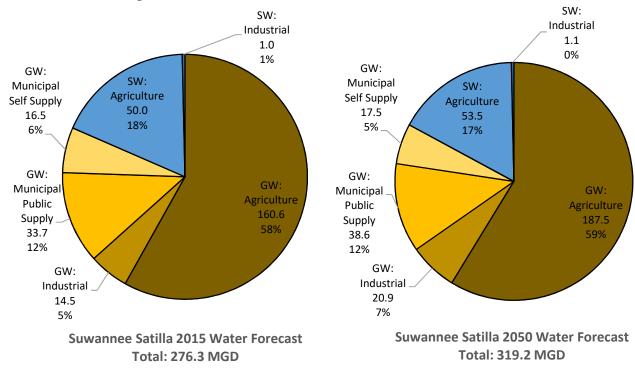


Figure 2-1: Suwannee-Satilla Regional Water Forecast by Sector and Supply Source

2.1.1 Groundwater Forecasts and Comparison to Groundwater Permits

Out of the 42.9 mgd increase in total water need by 2050, 39.3 mgd is projected to come from groundwater sources. **Table 2-1** shows the breakdown of this groundwater forecast by prioritized aquifer. Note that almost all groundwater is forecast to come from the Floridan aquifer.

Aquifer	2015	2050	Difference
Brunswick	3.4	4.1	0.7
Claiborne	0.13	0.14	0.01
Cretaceous	0.06	0.08	0.02
Floridan	221.6	260.3	38.7
Total	225.3	264.6	39.3

Table 2-1: Regional Groundwater Forecast by Aquifer (MGD)

Table 2-2 shows the portion of the groundwater forecast for publicly-supplied municipal use. The existing permitted capacity by county is shown as well as any gap between the permitted capacity and the 2050 forecast.

County	2015 Public Demand Forecast (AAD – MGD)	2050 Public Demand Forecast (AAD – MGD)	Existing Permitted Capacity (AAD – MGD)	Additional Permitted Capacity Needed in 2050 (AAD – MGD)*
Atkinson	0.43	0.38	0.90	-
Bacon	0.66	0.80	1.50	-
Ben Hill	2.47	2.63	5.50	-
Berrien	1.10	0.83	1.73	-
Brantley	0.25	0.24	0.20	0.04
Brooks	0.97	0.73	3.55	-
Charlton	0.71	0.75	1.40	-
Clinch	0.45	0.42	0.75	-
Coffee	2.53	2.95	6.80	-
Cook	1.29	1.36	4.00	-
Echols	0.08	0.07	0	0.07
Irwin	0.52	0.43	0.70	-
Lanier	0.60	0.83	0.70	0.13
Lowndes	12.35	16.60	19.04	-
Pierce	0.71	0.96	0.83	0.13
Tift	4.50	5.16	9.18	-
Turner	0.74	0.41	1.90	-
Ware	3.32	3.00	7.40	-

Table 2-2: 2050 Municipal Forecast versus Groundwater Permitted Capacity

*Analysis does not account for demands in one county that may be met by permits from another county. Values provided are average annual demands in millions of gallons per day (AAD-MGD)

2.1.2 Surface Water Forecasts

For the Suwannee-Satilla Region, surface water is utilized to meet agricultural demands and some small industrial demands. Total surface water demands are expected to increase by 3.6 mgd by 2050 (3.5 mgd from agricultural demands and 0.1 mgd from industrial demands). Counties with the largest projected growth in agricultural surface water usage include Berrien, Irwin, Tift, Turner, and Coffee counties.

2.2 Wastewater Forecast Summary

Figure 2-2 shows the aggregated county wastewater forecasts for the Suwannee-Satilla Region in 2015 and 2050. Overall, the regional forecasted wastewater flows are expected to increase by approximately 13.6 MGD.

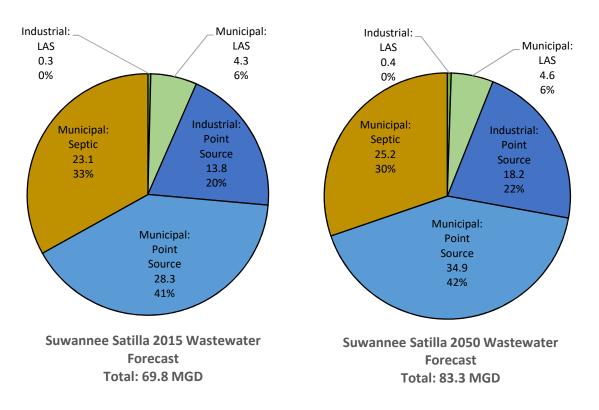


Figure 2-2: Suwannee-Satilla Regional Wastewater Forecast by Discharge Method and Sector

2.2.1 Comparing Wastewater Forecasts to Permitted Capacity

About 47% of the total regional wastewater flow is directed to municipal centralized treatment with ultimate discharge either directly to streams (point source) or through land application systems (LAS). This includes municipal wastewater as well as industrial wastewater that is treated and discharged through municipal centralized treatment facilities. **Table 2-3** shows the wastewater forecasts and permitted capacity for these municipal facilities summarized by county. The difference between the existing permitted capacity and the 2050 forecast is also listed for each county in terms of either surplus or gap. Bacon, Echols, and Pierce counties may exceed their current permitted capacity by 2050.

		Point Source (I	PS)	Land Application Systems (LAS)		
County	2050 Forecast ¹	Permitted Capacity	2050 Surplus or Gap (-)	2050 Forecast ¹	Permitted Capacity	2050 Surplus or Gap (-)
Atkinson	0.25	0.90	0.65	0.12	0.36	0.24
Bacon	0.80	0.75	-0.05	0	0.75	0.75
Ben Hill	3.17	6.00	2.83	0.18	0.30	0.12
Berrien	0.11	1.20	1.09	0	0	0
Brantley	0	0	0	0.11	0.12	0.01
Brooks	0	0	0	0.86	1.32	0.46
Charlton	0.65	1.08	0.43	0	0	0
Clinch	0.36	0.75	0.39	0	0	0
Coffee	4.14	6	1.86	0.56	0.66	0.10
Cook	2.55	3.19	0.64	0	0	0
Echols	0	0	0	0.003	0	-0.003
Irwin	0	0	0	0.50	0.85	0.35
Lanier	0.41	0.50	0.09	0	0	0
Lowndes	10.73	14.92	4.19	1.71	2.05	0.34
Pierce	0.34	0.21	-0.13	0.425	0.50	0.08
Tift	6.39	8.09	1.70	0.11	0.13	0.02
Turner	0.48	1.17	0.69	0.03	0.08	0.05
Ware	4.51	6.70	2.19	0	0	0
Total	34.90	50.71	15.81	4.60	7.12	2.51

¹Includes industrial wastewater expected to be treated at municipal facilities.

Groundwater Availability

A Groundwater Availability Resource Assessment was performed by CDM Smith in March 2010 with updated information on the Cretaceous and Claiborne aquifers provided in September 2012. This resource assessment evaluated the estimated sustainable yield of a group of prioritized aquifers. Sustainable yield is the amount of water that can be withdrawn from the modeled area of an aquifer without reaching specific thresholds of local or regional impacts.

3.1 Floridan Aquifer

Groundwater from the Floridan aquifer is a vital resource for the Suwannee-Satilla Region. Overall, water from the Floridan aquifer is used to meet 80% of the 2015 forecasted water demand for the whole region.

Within the groundwater resource assessment, an estimated range of sustainable yield of 868 to 982 mgd was determined for the Floridan aquifer in south-central Georgia and the eastern Coastal Plain of Georgia. This modeled area encompasses more than just the Suwannee-Satilla region. Other regions utilizing portions of the modeled Floridan aquifer include: Altamaha, Coastal Georgia, Middle Ocmulgee, Savannah-Upper Ogeechee, Upper Oconee, Lower Flint-Ochlockonee, and Upper Flint. **Figure 3-1** shows the forecasted demand for all regions utilizing the modeled portion of the Floridan aquifer. The portion of the demand coming from the Suwannee-Satilla Region is highlighted. Demands are projected to remain under the estimated range of sustainable yield for this aquifer.

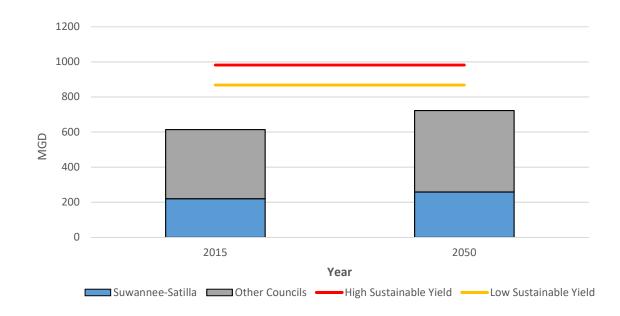


Figure 3-1: Floridan Aquifer in South Central Georgia & Eastern Coastal Plain Forecasted Groundwater Demand

3.2 Cretaceous Aquifer

Utilization of the Cretaceous aquifer is negligible for the Suwannee-Satilla Region. There is a small amount (0.06 mgd) utilized for agricultural demand in Clinch and Turner counties.

3.3 Brunswick Aquifer

The Brunswick aquifer was not one of the modeled aquifers as a part of the resource assessment. Utilization of the Brunswick aquifer makes up 1% of the total water use in the Suwannee-Satilla Region. Demands from this aquifer are for agricultural water use within 13 counties of the region.

3.4 Claiborne Aquifer

Utilization of the Claiborne aquifer is negligible for the Suwannee-Satilla Region. There are some small amounts utilized (0.13 mgd) to meet agricultural demands in Turner County.

Surface Water Availability

The Surface Water Availability Resource Assessment estimates the availability of surface water to meet current and future water needs as well as the needs of instream and downstream users. The Surface Water Availability Resource Assessment methodology and modeling results are presented in full in the *Synopsis Report: Surface Water Availability Resource Assessment* (May 2017).

4.1 Surface Water Planning Node Summary

There are several surface water planning nodes located within and near the Suwannee-Satilla Region. The modeling analysis conducted at these nodes under the Surface Water Availability Resource Assessment indicated the following under current and future conditions (bolded nodes are located within the planning region boundaries):

- Atkinson (Satilla River) Potential surface water gaps under current and future conditions.
- Fargo (Suwannee River) No potential surface water gaps predicted.
- Gross (Saint Marys River) No potential surface water gaps predicted.
- Jennings (Alapaha River) Potential surface water gaps under current and future conditions.
- Lumber City (Ocmulgee River) No potential surface water gaps predicted.
- Pinetta (Withlacoochee River) Potential surface water gaps under current and future conditions.
- Statenville (Alapaha River) Potential surface water gaps under current and future conditions.

While the Gross and Lumber City nodes are not located in the region, a portion of the local drainage area (LDA) or watershed of the nodes falls within the Suwannee-Satilla Region. The location of the planning nodes and the portion of the Suwannee-Satilla Region that is within the LDA of a node with a potential surface water gap is shown in **Figure 4-1**.

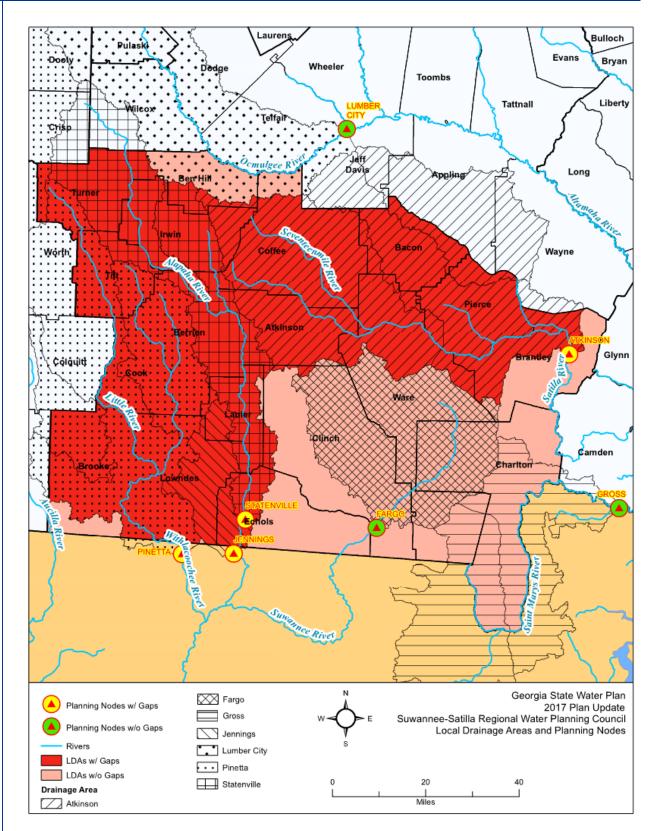


Figure 4-1: Potential Surface Water Gap Summary

4.2 Detailed Potential Gap Analysis

Modeled surface water gaps are driven by both net consumption (withdrawal minus returns) and year to year variation in river flows. In wet years, the region is less likely to experience any potential gaps to instream needs. In dry years, the potential gaps are likely to be more frequent and larger. **Table 4-1** provides a quantification and frequency of modeled potential surface water gaps. The majority of the modeled potential gaps were shorter in duration (1-7 days and 8 -14 days potential gap events).

Gap Event Duration	Even	nber of Gap ts (% of Total ap Events) ¹		p Days (% of al Days) ²	Average Daily Flow Deficit per Event	Average Cumulative Flow Deficit per Event	
Atkinson Node							
1-7 days	43	(51.2%)	146	(0.5%)	9 cfs (6 MGD)	35 cfsd (23 MG)	
8-14 days	11	(13.1%)	109	(0.4%)	16 cfs (10 MGD)	158 cfsd (103 MG)	
15-30 days	17	(20.2%)	403	(1.5%)	21 cfs (14 MGD)	498 cfsd (324 MG)	
>30 days	13	(15.5%)	608	(2.2%)	22 cfs (14 MGD)	1,031 cfsd (670 MG)	
Totals	84	(100.0%)	1266	(4.6%)			
				Jennings Node			
1-7 days	88	(54.3%)	249	(0.9%)	11 cfs (7 MGD)	42 cfsd (27 MG)	
8-14 days	30	(18.5%)	316	(1.2%)	28 cfs (18 MGD)	308 cfsd (200 MG)	
15-30 days	22	(13.6%)	478	(1.7%)	36 cfs (23 MGD)	796 cfsd (517 MG)	
>30 days	22	(13.6%)	1,208	(4.4%)	38 cfs (25 MGD)	2,255 cfsd (1,466 MG)	
Totals	162	(100.0%)	2,251	(8.2%)			
				Pinetta Node			
1-7 days	96	(51.3%)	313	(1.1%)	16 cfs (10 MGD)	63 cfsd (41 MG)	
8-14 days	40	(21.4%)	417	(1.5%)	26 cfs (17 MGD)	274 cfsd (178 MG)	
15-30 days	29	(15.5%)	563	(2.1%)	46 cfs (30 MGD)	920 cfsd (598 MG)	
>30 days	22	(11.8%)	1,134	(4.1%)	59 cfs (38 MGD)	3,064 cfsd (1,992 MG)	
Totals	187	(100.0%)	2,427	(8.9%)			
				Statenville Nod	e		
1-7 days	91	(48.4%)	298	(1.1%)	9 cfs (6 MGD)	37 cfsd (24 MG)	
8-14 days	37	(19.7%)	405	(1.5%)	21 cfs (14 MGD)	229 cfsd (149 MG)	
15-30 days	27	(14.4%)	554	(2.0%)	26 cfs (17 MGD)	536 cfsd (348 MG)	
>30 days	33	(17.6%)	2044	(7.5%)	38 cfs (25 MGD)	2,444 cfsd (1,589 MG)	
Totals	188	(100.0%)	3301	(12.1%)			

¹ The total number of modeled gap events is presented for each duration range, as well as the percentage in that duration range to the total number of all modeled gap events.

² The total number of days within the modeling period (1939-2013) in which a potential gap occurred is presented, as well as the percentage of that total to the total number of days analyzed in the modeling period.

The following subsections provide a more detailed look at the potential gaps at each planning node. Each subsection provides a comparison of the potential gaps under current demands and projected 2050 future demands. The potentials gaps are then compared against the forecasted surface water demands for the Councils and counties within the local drainage area of each node.

4.2.1 Potential Gaps at the Atkinson Node

The Atkinson node is located on the Satilla River in Atkinson, Georgia. Surface water withdrawals and discharges in the local drainage area for this node includes municipal returns, industrial demands, and agricultural use. **Table 4-2** provides an overview of the potential gaps at the Atkinson node under current conditions and future conditions. **Table 4-3** shows the Regional Water Planning Councils and counties within the local drainage area of the node, the forecasted surface water demand and the potential gaps for comparison.

Scenario	Duration of Gap (% of total days)	Average Flow Deficit	Long-term Average Flow	Maximum 1-Day Gap	Corresponding Flow Regime
Current Demands	10	24 cfs / 16 MGD	2,208 cfs / 1,427 MGD	69 cfs / 45 MGD	118 cfs / 76 MGD
Future (2050) Demands	5	20 cfs / 13 MGD	2,236 cfs / 1,445 MGD	42 cfs / 27 MGD	85 cfs / 55 MGD

Table 4-2: Potential Surface Water Gaps at Atkinson Node

Table 4-3: Atkinson Planning Node Surface Water Forecast and Summary of Potential Gaps by Region

Councils and Associated Counties That Are Within in the Local Drainage Area	Total 2050 Forecasted Surface Water Demand at Planning Node	Information: Flow Deficit Summarized	ential Gap Average Daily per Gap Event d by Planning ode	2050 Forecasted Surface Water Withdrawals Summarized by Planning Council
with Potential Gaps Summarized by Sector (MGD)		1-7 Day Duration	8 - 14 Day Duration	(MGD)
	Satil	la River		
Altamaha – Appling, Jeff Davis, Wayne	Agriculture: 2.82	6 MGD (9 cfs)	10 MGD (16 cfs) 13.1% of all	2.82
Suwannee-Satilla – Atkinson, Bacon, Ben Hill, Brantley, Coffee, Irwin, Pierce, Ware	Agriculture: 13.06 Industrial: 1.08	51.2% of all potential gap events	potential gap events	14.14
			Total:	16.96

4.2.2 Potential Gaps at Jennings Node

The Jennings node is located on the Alapaha River near Jennings, Florida. Surface water withdrawals and discharges in the local drainage area for this node includes agricultural use. **Table 4-4** provides an overview of the potential gaps at the Jennings node under current conditions and future conditions. **Table 4-5** shows the Regional Water Planning Councils and counties within the local drainage area of the node, the forecasted surface water demand and the potential gaps for comparison.

Scenario	Duration of Gap	Average Flow	Long-term	Maximum	Corresponding Flow
	(% of total days)	Deficit	Average Flow	1-Day Gap	Regime
Current	11	33 cfs	1,367 cfs	103 cfs	161 cfs
Demands		(21 MGD)	(883 MGD)	(67 MGD)	(104 MGD)
Future (2050) Demands	8	36 cfs (23 MGD)	1,380 cfs (892 MGD)	109 cfs (70 MGD)	135 cfs (87 MGD)

Table 4-4: Potential Surface Water 0	Gaps at Jennings Node
--------------------------------------	-----------------------

Table 4-5: Jennings Planning Node Surface Water Forecast and Summary of Potential Gaps by Region

Councils and Associated Counties That Are Within in the Local Drainage Area	Total 2050 Forecasted Surface Water Demand at Planning Node	2050 Potential Gap Information: Average Daily Flow Deficit per Gap Event Summarized by Planning Node		2050 Forecasted Surface Water Withdrawals Summarized by		
with Potential Gaps	Summarized by Sector (MGD)	1-7 Day Duration	8 - 14 Day Duration	Planning Council (MGD)		
	Alapaha River					
Altamaha – Wilcox	Agriculture: 2.27	7 MGD (11	7 MGD (11 18 MGD (28	2.27		
Suwannee-Satilla – Atkinson, Ben Hill, Berrien, Coffee, Echols, Irwin, Lanier, Lowndes, Tift, Turner	Agriculture: 20.84	cfs) 54.3% of all potential gap	cfs) 18.5% of all potential gap	20.84		
Upper Flint – Crisp, Dooly	Agriculture: 3.99	events	events	3.99		
			Total:	27.1		

4.2.3 Potential Gaps at Pinetta Node

The Pinetta node is located on the Withlacoochee River near Concord, Florida. Surface water withdrawals and discharges in the local drainage area for this node includes municipal returns, industrial returns, and agricultural use. **Table 4-6** provides an overview of the potential gaps at the Atkinson node under current conditions and future conditions. **Table 4-7** shows the Regional Water Planning Councils and counties within the local drainage area of the node, the forecasted surface water demand and the potential gaps for comparison.

Scenario	Duration of Gap (% of total days)	Average Flow Deficit	Long-term Average Flow	Maximum 1-Day Gap	Corresponding Flow Regime
Current Demands	12	45 cfs (29 MGD)	1,687 cfs (1,090 MGD)	118 cfs (76 MGD)	190 cfs (123 MGD)
Future (2050) Demands	9	46 cfs (30 MGD)	1,721 cfs (1,112 MGD)	108 cfs (70 MGD)	155 cfs (100 MGD)

Table 4-6: Potential Surface Water Gaps at Pinetta Node

Table 4-7: Pinetta Planning Node Surface Water Forecast and Summary of Potential Gaps by Region

Councils and Associated Counties That Are Within in the Local Drainage Area	Total 2050 Forecasted Surface Water Demand at Planning Node	2050 Potential Gap Information: Average Daily Flow Deficit per Gap Event Summarized by Planning Node		2050 Forecasted Surface Water Withdrawals Summarized by
with Potential Gaps	Summarized by Sector (MGD)	1-7 Day Duration	8-14 Day Duration	Planning Council (MGD)
	Ogeec	hee River		
Lower Flint-Ochlockonee – Colquitt, Thomas, Worth	Agriculture: 16.09	10 MGD	17 MGD	16.09
Suwannee-Satilla – Berrien, Brooks, Cook, Lanier, Lowndes, Tift, Turner	Agriculture: 17.98 Golf Course: 0.07	(16 cfs) 51.3% of all	(26 cfs) 21.4% of all	18.05
Upper Flint – Crisp, Dooly	0	potential gap events	potential gap events	0
	Total:	34.14		

4.2.4 Potential Gaps at Statenville Node

The Statenville node is located on the Alapaha River at Statenville, Georgia. Surface water withdrawals and discharges in the local drainage area for this node includes municipal returns and agricultural use. **Table 4-8** provides an overview of the potential gaps at the Statenville node under current conditions and future conditions. **Table 4-9** shows the Regional Water Planning Councils and counties within the local drainage area of the node, the forecasted surface water demand and the potential gaps for comparison.

Scenario	Duration of Gap (% of total days)	Average Flow Deficit	Long-term Average Flow	Maximum 1-Day Gap	Corresponding Flow Regime
Current Demands	17	26 cfs / 17 MGD	1,047 cfs / 677 MGD	89 cfs / 58 MGD	100 cfs / 65 MGD
Future (2050) Demands	12	32 cfs / 21 MGD	1,058 cfs / 684 MGD	77 cfs / 50 MGD	77 cfs / 50 MGD

Councils and Associated Counties That Are Within in the Local Drainage Area	Total 2050 Forecasted Surface Water Demand at Planning Node	Information: Flow Deficit p Summarized	ential Gap Average Daily Der Gap Event I by Planning Dde	2050 Forecasted Surface Water Withdrawals Summarized by	
with Potential Gaps	Summarized by Sector (MGD)	1-7 Day Duration	8-14 Day Duration	Planning Council (MGD)	
	Alapa	iha River			
Altamaha – Wilcox	Agriculture: 2.27			2.27	
Suwannee-Satilla – Atkinson, Ben Hill, Berrien, Coffee, Echols, Irwin, Lanier, Tift, Turner	Agriculture: 19.45	6 MGD (9 cfs) 48.4% of all	14 MGD (21 cfs) 19.7% of all	19.45	
Upper Flint – Crisp, Dooly	Agriculture:3.99	potential gap events	potential gap events	3.99	
	25.71				

Table 4-9: Statenville Planning Node Surface Water Forecast and Summary of Potential Gaps by Region

This page intentionally left blank.

Surface Water Quality

The Surface Water Quality (Assimilative Capacity) Resource Assessment estimated the capacity of Georgia's surface waters to assimilate pollutants without unacceptable degradation of water quality. This section describes the relevant finding of the assessment for the Suwannee-Satilla Region.

5.1 Dissolved Oxygen Assimilative Capacity

One measure of the capacity of a stream to maintain its health and the health of the aquatic species living therein is the amount of residual dissolved oxygen (DO) in the waters of the stream. The Assimilative Capacity Resource Assessment drew upon water quality modeling tools to estimate the ability of streams and estuaries to assimilate pollutants under current and future conditions. The current conditions modeling incorporated all municipal and industrial wastewater facilities operating at their full permitted discharge levels (flow and effluent discharge limits as of 2014). The results for the Suwannee-Satilla Region at current permitted conditions are presented in **Table 5-1** and **Figure 5-1**.

	Available Assimilative Capacity (Total Mileage)						Madalad
Basin	Very Good (<u>≥</u> 1.0 mg/L)	Good (0.5 to <1.0 mg/L)	Moderate (0.2 to <0.5 mg/L)	Limited (>0.0 to <0.2 mg/L)	None or Exceeded (<0.0 mg/L)	Unmodeled	Modeled Miles in Council Region
Ochlockonee	0	0	0	0	3	0	3
Ocmulgee	3	33	0	0	0	0	36
Satilla	73	91	31	14	60	0	269
St Marys	0	0	6	3	12	0	21
Suwannee	289	91	54	0	85	5	524

Table 5-1: Permitted Assimilative Capacity for DO in the Suwannee-Satilla Region

Source: GIS Files from the Updated Permitted Water Quality Resource Assessment; EPD, January 2017

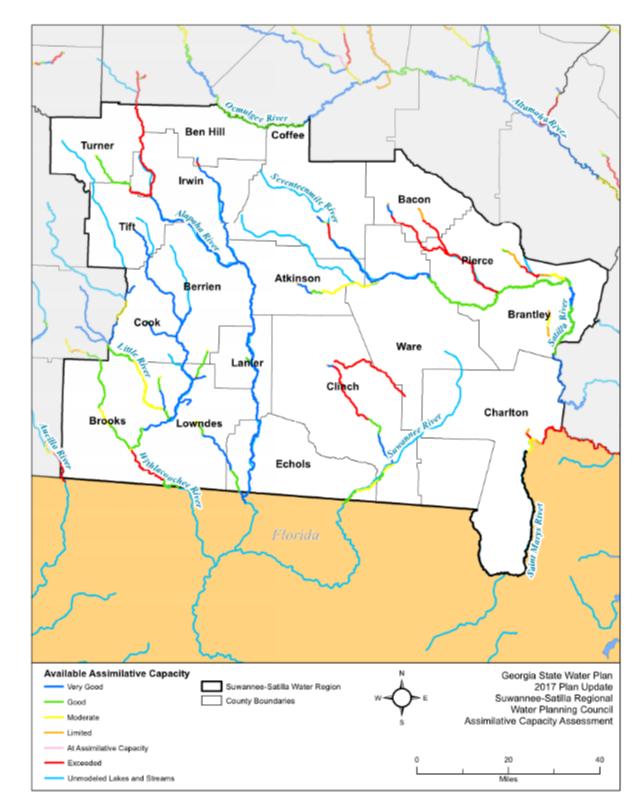


Figure 5-1: Results of DO Assimilative Capacity Assessment at Permitted Conditions

The stream segments at or exceeding their assimilative capacity within the Suwannee-Satilla Region are listed in **Table 5-2**.

Basin	Stream Segment	Length (miles)
Ochlockence	Aucilla River - Cat Creek to StateLine	2.0
Ochlockonee	Aucilla River - SR 133 to Cat Creek	1.2
	Alabaha River - Little Hurricane to Satilla River	19.4
	Hurricane Creek - 125' Contour to Little Hurricane	10.8
	Little Hurricane - 140' Contour to Hurricane Creek	15.5
Satilla	Little Hurricane - 155' Contour to 140' Contour	4.0
	Little Satilla - Otter Ck to Little Satilla	6.2
	Seventeen Mile River	3.1
	Seventeen Mile River	0.5
Ct Manua	Spanish Creek - Clay Branch to St. Marys River	1.9
St Marys	St Marys River - Folkston Proposed discharge to Hwy 17	9.7
	Alapaha River - Alapaha River to Trib X	13.6
	Alapaha River - Trib X to Hat Creek	11.4
	Cane Creek - Cane Creek to Swamp	15.6
	Cat Creek - Beatty Branch	0.1
C	Hat Creek - Location T to Alapaha River	6.3
Suwannee	Tatum Creek - Unnamed Trib to Bird Sandhill Trib	17.1
	Willacoochee River - Dam	1.2
	Withlacoochee River - Okapilco Creek to Clyatt Mill Creek	13.4
	Woodyard Creek - Homerville WPCP to Woodyard Ck	0.3
	Woodyard Creek - Woodyard Ck to Cane Creek	5.9

 Table 5-2: Stream Segments with No or Exceeded Assimilative Capacity under Current Permitted

 Conditions

5.2 Non-Point Source Pollution

Under Section 303(d) of the federal Clean Water Act, total maximum daily loads (TMDLs) are developed for waters that do not meet their designated uses. A TMDL represents the maximum pollutant loading that a water body can assimilate and continue meeting its designated use (i.e., not exceeding State water quality standards).

For the Suwannee-Satilla Region, there are 83 impaired stream reaches (total impaired length of 946 miles) that are listed as impaired based on the 2014 list of impaired waters developed by EPD.

Of the impaired reaches in the region (note that a reach may be impaired for more than one parameter):

- 35% are impaired for trophic-weighted residual mercury in fish tissue
- 30% are impaired for low dissolved oxygen
- 28% are impaired for fecal coliform
- 3% are impaired for lead
- 1% are impaired for Biological (Fish Community)
- 1% are impaired for Biological (Macroinvertebrate Community)
- 1% are impaired for pH
- 1% are impaired for algae
- <1% are impaired for Arsenic

A map of the impaired waters is provided in **Figure 5-2**. TMDLs have been completed for 73 of the impaired stream reaches.

5.3 Nutrient Loading

In addition to assimilative capacity modeling for DO, EPD completed nutrient (total nitrogen and total phosphorous) modeling for the watersheds in the Suwannee-Satilla Region. The watershed models evaluate point and non-point source nutrient loadings. Results are provided within the resource assessment for wet, dry and normal years. Example figures of nutrient loading for the Suwannee River Watershed under 2050 future conditions for a wet year are provided in **Figure 5-3** for total nitrogen and **Figure 5-4** for total phosphorus. There are currently no nutrient standards for total nitrogen and total phosphorus in the region.

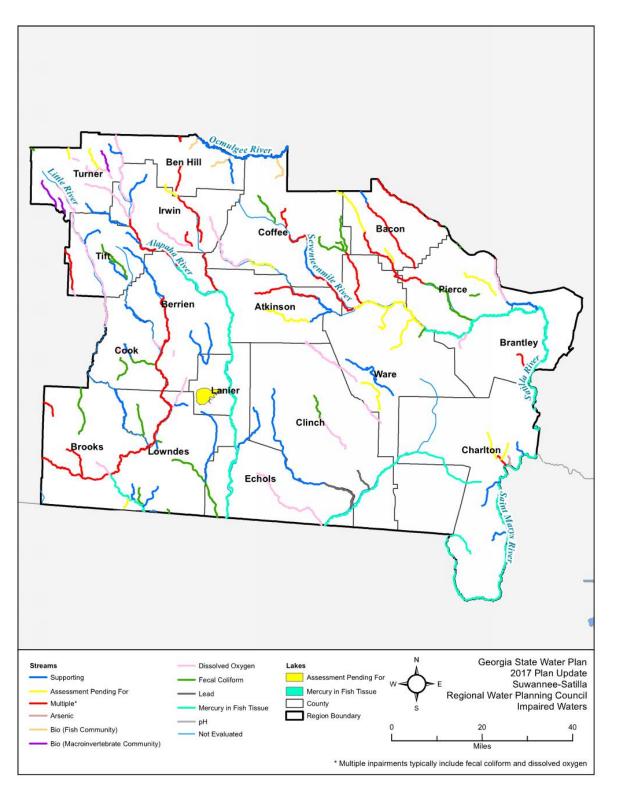


Figure 5-2: Impaired Water Bodies

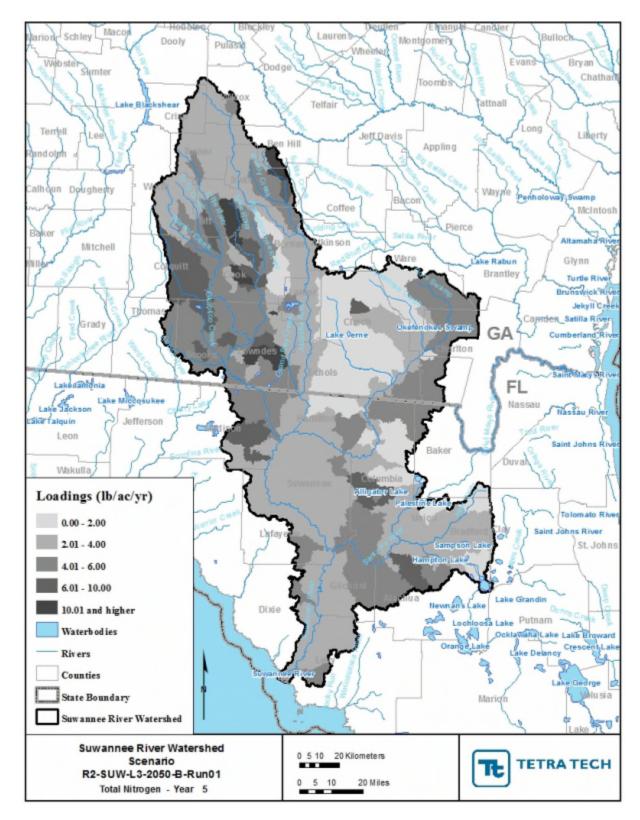


Figure 5-3: Total Nitrogen Loading for the Suwannee River Watershed during Wet Year Future (2050) Conditions

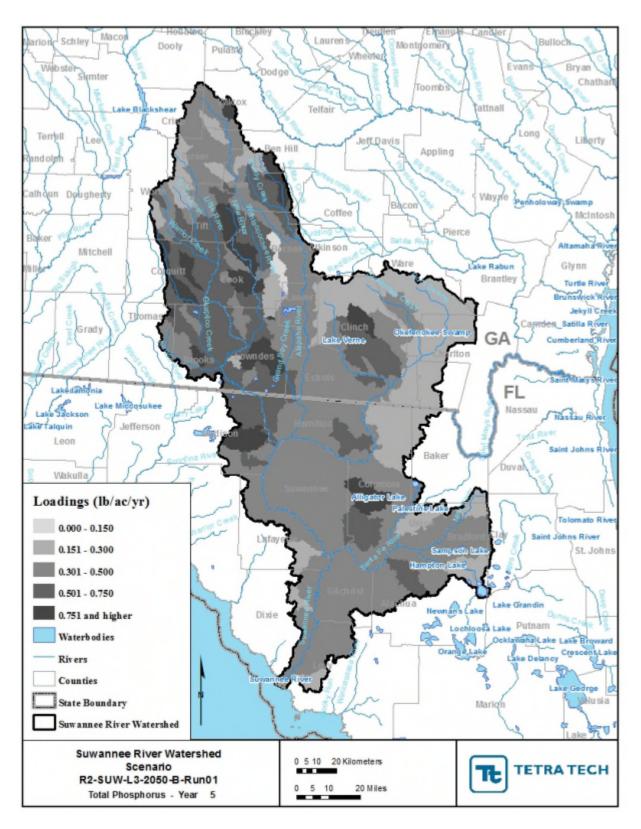


Figure 5-4: Total Phosphorus Loading for the Suwannee River Watershed during Wet Year Future (2050) Conditions

This page intentionally left blank.

Gap Analysis Summary

This section summarizes the potential water resources issues in the Suwannee-Satilla Region. **Table 6-1** summarizes the potential water resource issues and permitted capacity needs in the Suwannee-Satilla Region by County. Potential water resource issues include:

- Over the planning horizon, forecasted surface water demands within and outside the region are projected to result in potential gaps at locations in the Region (Alapaha, Suwannee, Satilla, and Withlacoochee Rivers).
- Regionally, there is sufficient groundwater to meet forecasted needs over the planning horizon.
- Water quality conditions indicate the potential need for improved wastewater treatment within the Suwannee, Satilla, and St. Marys River basins.

County	Municipal Water Permitted Capacity Need	Part of Drainage Area with Modeled Surface Water Gaps	Municipal Wastewater Permitted Capacity Need	Water Quality – DO Assimilative Capacity Issues
Source	Table 2-2	Figure 4-1	Table 2-3	Figure 5-1
Atkinson	-	Yes	-	-
Bacon	-	Yes	Yes	Yes
Ben Hill	-	Yes	-	Yes
Berrien	-	Yes	-	-
Brantley	Yes	Yes	-	Yes
Brooks	-	Yes	-	Yes
Charlton	-	-	-	-
Clinch	-	Yes	-	Yes
Coffee	-	Yes	-	Yes
Cook	-	Yes	-	-
Echols	Yes	Yes	Yes	-
Irwin	-	Yes	-	Yes
Lanier	Yes	Yes	-	-
Lowndes	-	Yes	-	Yes
Pierce	Yes	Yes	Yes	Yes
Tift	-	Yes	-	Yes
Turner	-	Yes	-	Yes
Ware	-	Yes	-	Yes

Table 6-1: Summary of Potential Water Resource Issues by County

1) "Yes" indicates a predicted gap in the indicated county (for surface water, "yes" indicates part or all of the indicated county lies in the area contributing to a potential gap)

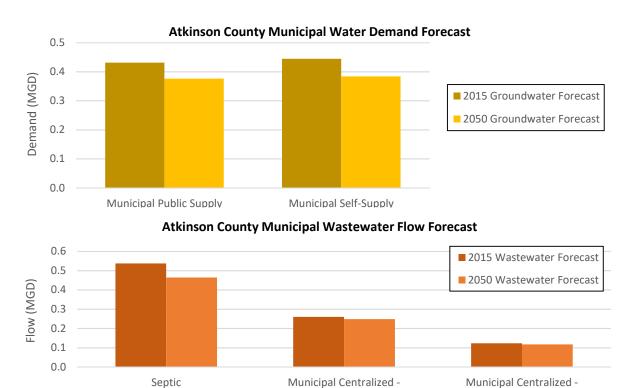
2) Permitted capacity need is based on the comparison of permitted municipal capacity versus 2050 forecasted demand.

This page intentionally left blank.

Appendix A

Municipal Forecasts versus Permitted Capacity by County

Within this appendix, the water and wastewater forecasts at the County level are compared to existing permitted capacities for facilities located within the County. These county level results should not be interpreted at the facility/municipality level, as they do not account for demands in one county that may be met by permits from another county. Water and wastewater providers should review the information presented here and incorporate the general trends into their actual planning and permit needs.


Atkinson County

Municipal Water and Wastewater Permits Compared to Forecasts

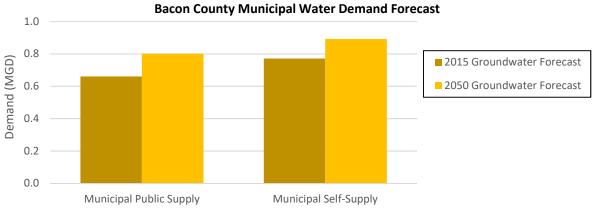
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)						
	Municipal Water Demands (MGD)								
Groundwater	0.9	0.4	0.5						
Surface Water	0	0	0.0						
Municipal Wastewater (MGD)									
NPDES (Point Source)	0.9	0.2	0.7						
LAS (Land Application)	0.4	0.1	0.3						

List of Individual Municipal Permits

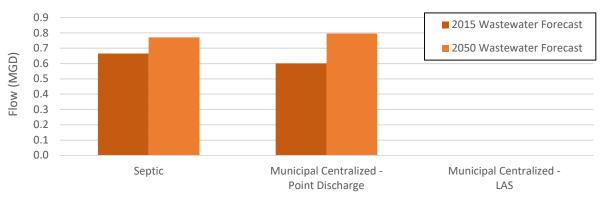
Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream					
	Existing Withdrawal Permits							
Pearson, City of	002-0001	0.4	Floridan Aquifer					
Willacoochee, City of	002-0002	0.5	Floridan Aquifer					
	Existing Permitted Wastewater Facility							
Pearson (City of) WPCP	GA0038334	0.9	Little Red Bluff Creek Tributary					
Willacoochee LAS	GAJ020164	0.355	LAS					

Point Discharge

LAS

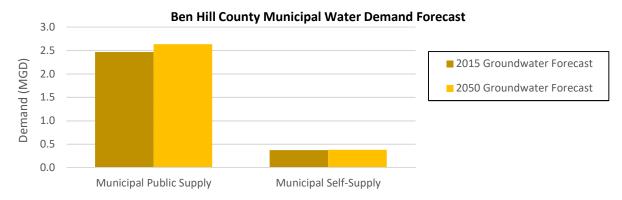

Bacon County

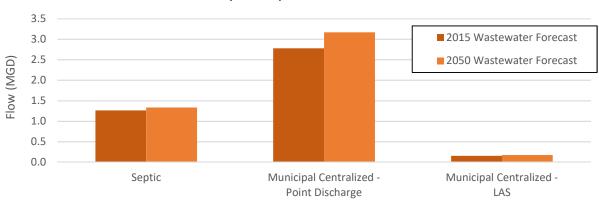
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)
	Municipal Water	Demands (MGD)	
Groundwater	1.5	0.8	0.7
Surface Water	0	0	0
Municipal Wastewater (MGD)			
NPDES (Point Source)	0.75	0.8	-0.05
LAS (Land Application)	0.75	0	0.75


Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
	Existing Withdrawal Permits			
Alma, City of	003-0001	1.5	Floridan Aquifer	
	Existing Permitted Wastewater Facility			
Alma (City of) WPCP	GA0032328	0.75	Hurricane Creek Tributary	
Alma LAS	GAJ020044	0.75	LAS	


Ben Hill County

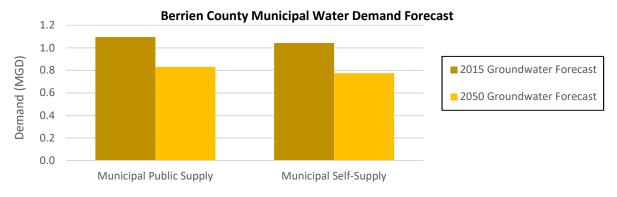

Municipal Water and Wastewater Permits Compared to Forecasts

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)
	Municipal Water	Demands (MGD)	
Groundwater	5.5	2.6	2.9
Surface Water	0	0	0
Municipal Wastewater (MGD)			
NPDES (Point Source)	6	3.2	2.8
LAS (Land Application)	0.3	0.2	0.1

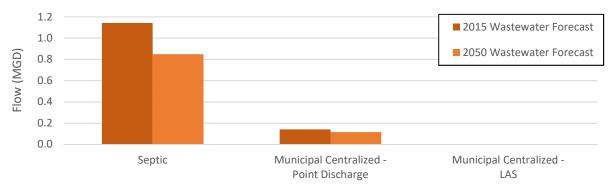
List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
	Existing Withd	Irawal Permits		
Fitzgerald Water, Light, & Bond Commission	009-0001	5.5	Floridan Aquifer	
	Existing Permitted Wastewater Facility			
Fitzgerald (City of) - C.A. Newcomer WPCP	GA0047236	6	Turkey Creek	
Fitzgerald	GAJ020240	0.3	LAS	

Ben Hill County Municipal Wastewater Flow Forecast


Berrien County

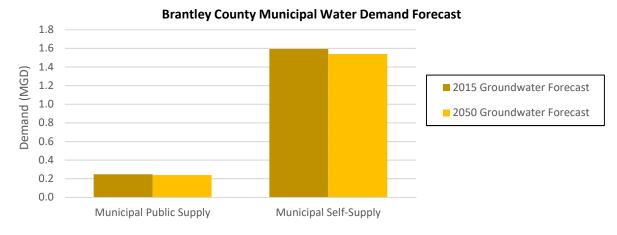
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	1.7	0.8	0.9		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	1.2	0.1	1.1		
LAS (Land Application)	0	0	0		


Municipal Water and Wastewater Permits Compared to Forecasts

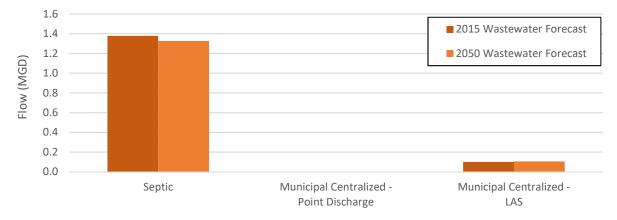
List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
	Existing Withdrawa	l Permits		
City of Nashville	010-0001	1.5	Floridan Aquifer	
Enigma, Town of	010-0003	0.225	Floridan Aquifer	
	Existing Permitted Wastewater Facility			
Nashville (City of) WPCP	GA0039365	1	Proposed-Withlacoochee River	
Ray City (City of) WPCP	GA0033553	0.1	Cat Creek	
Alapaha (Town of) WPCP	GA0033596	0.1	Alapaha River Tributary	

Berrien County Municipal Wastewater Flow Forecast


Brantley County

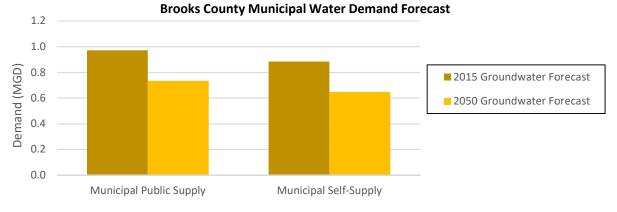
Municipal Water and Wastewater Permits Compared to Forecasts


Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)
	Municipal Water	Demands (MGD)	
Groundwater	0.20	0.24	-0.04
Surface Water	0	0	0
Municipal Wastewater (MGD)			
NPDES (Point Source)	0	0	0
LAS (Land Application)	0.12	0.11	0.01

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
Existing Withdrawal Permits				
Nahunta, City of	013-0001	0.2	Floridan Aquifer	
Existing Permitted Wastewater Facility				
Nahunta (City of) LAS	GAJ020062	0.12	LAS	

Brantley County Municipal Wastewater Flow Forecast


Brooks County

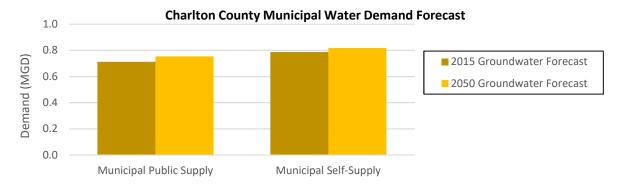
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	3.5	0.7	2.8		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	0	0	0		
LAS (Land Application)	1.3	0.9	0.4		

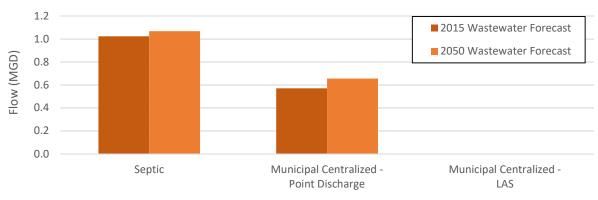

Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
	Existing Withdrawal P	ermits		
Quitman, City of	014-0001	1.4	Floridan Aquifer	
Triangle Utility Company, Inc.	014-0003	2	Floridan Aquifer	
Water Service Company of Georgia, Inc.	014-0004	0.145	Floridan Aquifer	
Existing Permitted Wastewater Facility				
City of Quitman LAS	GAJ020022	1.3	LAS	
Lahood's Fellowship Home	GAJ030963	0.015	LAS	

Brooks County Municipal Wastewater Flow Forecast


Charlton County

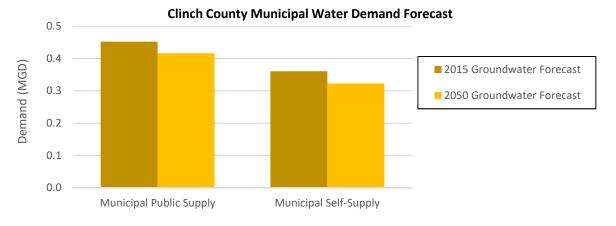

Municipal Water and Wastewater Permits Compared to Forecasts

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	1.4	0.8	0.6		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	1.1	0.7	0.4		
LAS (Land Application)	0	0	0		

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream		
	Existing Withdrawal Permits				
Folkston, City of	024-0001	1.25	Floridan Aquifer		
Homeland, City of	024-0005	0.15	Floridan Aquifer		
	Existing Permitted Wastewater Facility				
Folkston WPCP	GA0027189	0.28	Clay Branch		
Folkston WPCP	GA0037613	0.8	Spanish Branch		

Charlton County Municipal Wastewater Flow Forecast


Clinch County

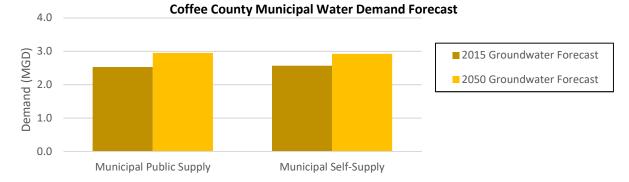

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	0.8	0.4	0.4		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	0.8	0.4	0.4		
LAS (Land Application)	0	0	0		

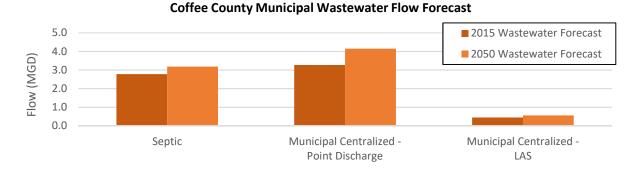
Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withd	Irawal Permits	
Homerville, City of	032-0001	0.75	Floridan Aquifer
	Existing Permitted	Wastewater Facility	
Homerville (City of) - Industrial Park WPCP	GA0037460	0.25	Tatum Creek
Homerville (City of) WPCP	GA0031828	0.5	Gallows Branch

Clinch County Municipal Wastewater Flow Forecast

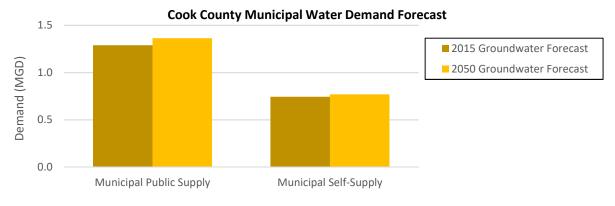

Coffee County


Municipal Water and Wastewater Permits Compared to Forecasts

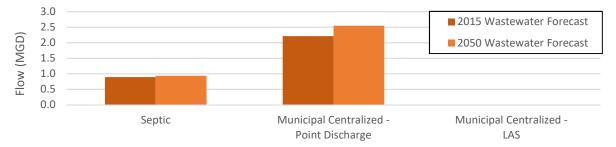
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water	Demands (MGD)			
Groundwater	6.8	3.0	3.8		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	6	4.1	1.9		
LAS (Land Application)	0.7	0.6	0.1		

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withdrawal Perm	nits	
Douglas, City of	034-0001	5.75	Floridan Aquifer
City of Broxton	034-0002	0.25	Floridan Aquifer
Nicholls, City of	034-0003	0.5	Floridan Aquifer
Coffee County Board of Commissioners	034-0005	0.3	Floridan Aquifer
Exist	ting Permitted Wastewate	r Facility	
Douglas (City of) - Southeast WPCP	GA0024431	6	Seventeen Mile Creek
Broxton LAS	GAJ020124	0.162	LAS
Nicholls (City of) LAS	GAJ020267	0.5	LAS


Cook County

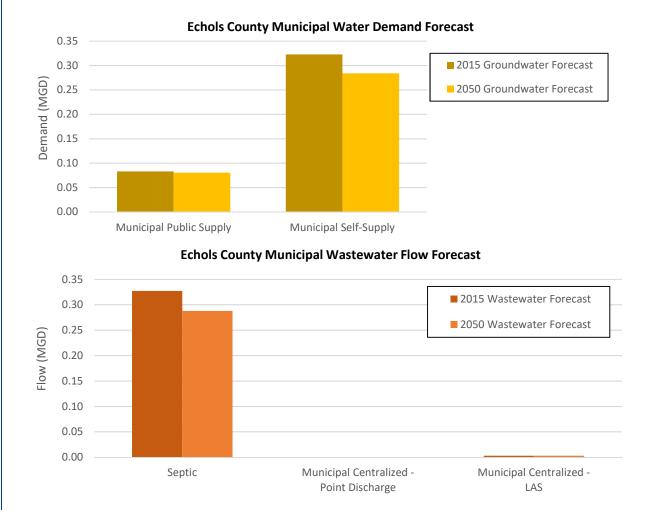
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	4	1.4	2.6		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	3.2	2.5	0.7		
LAS (Land Application)	0	0	0		


Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withd	rawal Permits	
Adel, City of	037-0001	3.3	Floridan Aquifer
Sparks, City of	037-0003	0.55	Floridan Aquifer
Lenox, City of	037-0005	0.15	Claiborne Aquifer
	Existing Permitted	Wastewater Facility	
Lenox (City of) WPCP	GA0031950	0.17	Little River Tributary (Flat Creek)
Sparks (City of) WPCP	GA0021563	0.5	Bear Creek
Economy Inn WPCP	GA0034738	0.015	Little River
Adel (City of) WPCP	GA0024911	2.5	Bear Creek

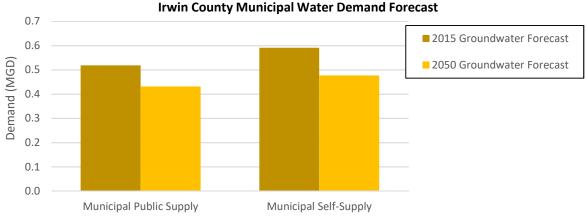
Cook County Municipal Wastewater Flow Forecast



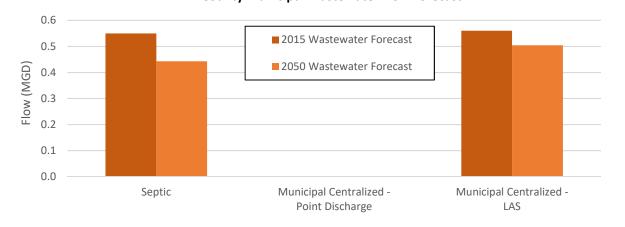
Echols County

Municipal Water and Wastewater Permits Compared to Forecasts

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	0	0.1	-0.1		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	0	0	0		
LAS (Land Application)	0	0.003	-0.003		


Irwin County

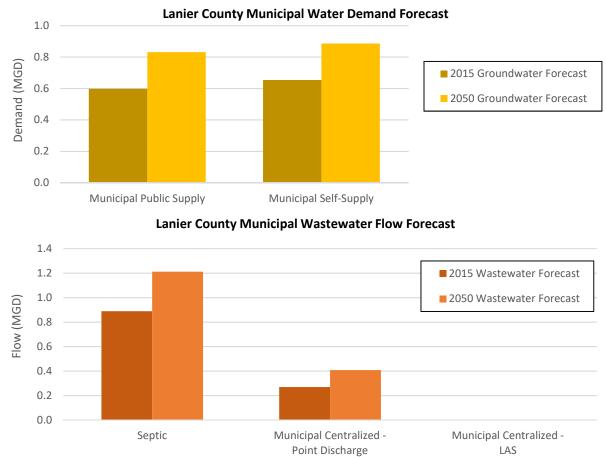
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)	
Municipal Water Demands (MGD)				
Groundwater	0.7	0.4	0.3	
Surface Water	0	0	0	
Municipal Wastewater (MGD)				
NPDES (Point Source)	0	0	0	
LAS (Land Application)	0.9	0.5	0.4	


Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream	
Existing Withdrawal Permits				
Ocilla, City of	077-0001	0.7	Floridan Aquifer	
Existing Permitted Wastewater Facility				
Ocilla LAS	GAJ020180	0.85	LAS	

Irwin County Municipal Wastewater Flow Forecast


Lanier County

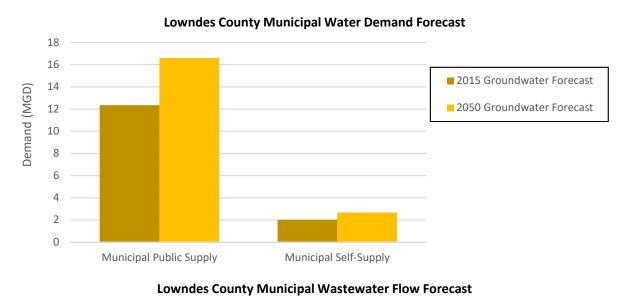
Municipal Water and Wastewater Permits Compared to Forecasts

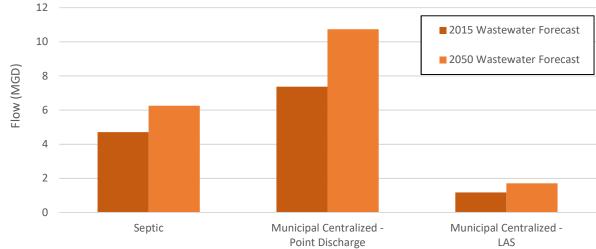
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	0.7	0.8	-0.1		
Surface Water	0	0	0		
Municipal Wastewater (MGD)					
NPDES (Point Source)	0.5	0.4	0.1		
LAS (Land Application)	0	0	0		

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
Existing Withdrawal Permits			
Lakeland, City of	086-0001	0.7	Floridan Aquifer
Existing Permitted Wastewater Facility			
Lakeland (City of) WPCP	GA0021296	0.5	Big Creek

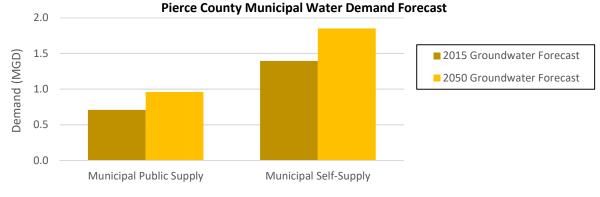
Lowndes County

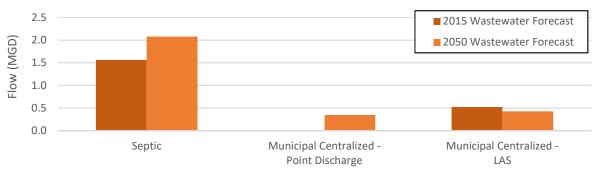

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	19	16.6	2.4		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	14.9	10.7	4.2		
LAS (Land Application)	2	1.7	0.3		


Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
Ex	isting Withdrawal Pern	nits	
Hahira, City of	092-0003	0.4	Floridan Aquifer
Valdosta, City of	092-0004	11.4	Floridan Aquifer
Department of the Air Force - Moody Air Force Base	092-0006	0.8	Floridan Aquifer
Lowndes County Board of Commissioners - S. Lowndes System	092-0009	4.416	Floridan Aquifer
Lowndes County Board of Commissioners - N. Lowndes System	092-0011	1.52	Floridan Aquifer
Lowndes County Schools	092-0012	0	Floridan Aquifer
Lowndes County Board of Commissioners - Kinderlou Area	092-0013	0.5	Floridan Aquifer
Existing	g Permitted Wastewate	r Facility	
Moody AFB	GA0020001	0.75	Beatty Creek
Valdosta (City of) - Mud Creek WPCP	GA0020222	5.7	Mud Creek
Stoker Utilities, LLC - Oak Street Subdivision WPCP	GA0030104	0.1	Cherry Creek Tributary
Valdosta (City of) - Withlacoochee River WPCP	GA0033235	8	Withlacoochee River
Hahira (City of) WPCP	GA0037974	0.344	Franks Creek Tributary
GA Sheriff's Boy Ranch WPCP	GA0047228	0.025	Unnamed Creek to Withlacoochee River
Hamilton Point/Heather Woods Subd.	GAJ020030	0.05	LAS
Lowndes County South Lowndes Regional	GAJ020294	2	LAS


Pierce County

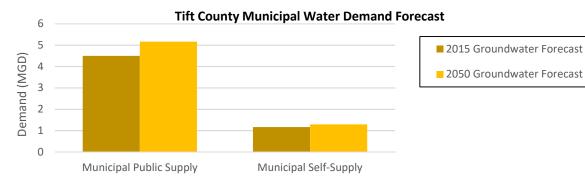

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	0.8	1.0	-0.2		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	0.2	0.3	-0.1		
LAS (Land Application)	0.5	0.4	0.1		

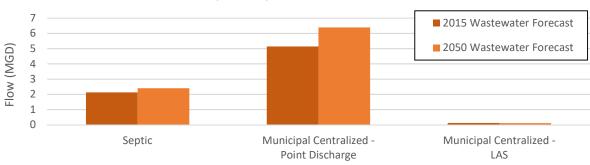
Municipal Water and Wastewater Permits Compared to Forecasts

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withd	rawal Permits	
Blackshear, City of	113-0001	0.68	Floridan Aquifer
W&D Investments, Inc Okefenokee/Fairway Oaks Country Club	113-0004	0.15	Floridan Aquifer
Existing Permitted Wastewater Facility			
Patterson (City of) WRC	GA0037206	0.208	Patterson Creek
Blackshear (City of) LAS	GA02-001	0.5	LAS

Pierce County Municipal Wastewater Flow Forecast


Tift County

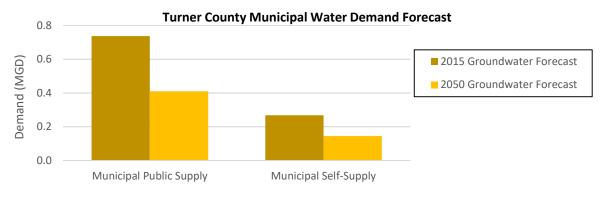

Municipal Water and Wastewater Permits Compared to Forecasts

Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	9.2	5.2	4		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	8.1	6.4	1.7		
LAS (Land Application)	0.1	0.1	0		

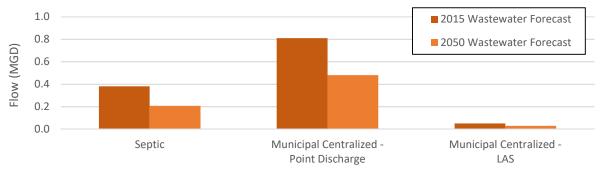
List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withdrawal Perm	iits	
Tifton, City of	137-0001	8.36	Floridan Aquifer
Abraham Baldwin Agricultural College	137-0002	0.5	Floridan Aquifer
Omega, City of	137-0003	0.32	Floridan Aquifer
E	xisting Permitted Wastewate	^r Facility	
Tifton (City of) - New River WPCP	GA0048470	8	New River Tributary
Economy Inn WPCP	GA0024465	0.016	Middle Creek
Ту Ту WPCP	GA0025500	0.078	Ty Ty Creek
Omega LAS	GAJ020219	0.131	LAS

Tift County Municipal Wastewater Flow Forecast


Turner County

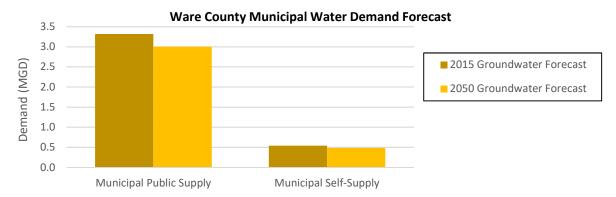
Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)		
	Municipal Water Demands (MGD)				
Groundwater	1.9	0.4	1.5		
Surface Water	0	0	0		
	Municipal Wastewater (MGD)				
NPDES (Point Source)	1.2	0.5	0.7		
LAS (Land Application)	0.08	0.03	0.05		


Municipal Water and Wastewater Permits Compared to Forecasts

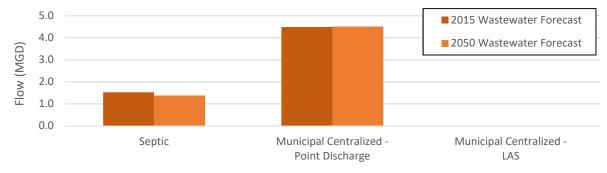
List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withdrawa	l Permits	
Ashburn, City of	142-0001	1.728	Floridan Aquifer
Sycamore, City of	142-0002	0.175	Floridan Aquifer
	Existing Permitted Waste	ewater Facility	
SK Group Of Motels, Inc	GA0023370	0.014	Unnamed Creek to Deep Creek
Ashburn (City of) - Airport WPCP	GA0025852	1.16	Hat Creek
Sycamore LAS	GAJ020067	0.082	LAS

Turner County Municipal Wastewater Flow Forecast


Ware County

Municipal Water and Wastewater Permits Compared to Forecasts


Permit Type	Permit Limit (MGD)	2050 Forecast	Surplus (+) Shortage (-)	
	Municipal Water	Demands (MGD)		
Groundwater	7.4	3.0	4.4	
Surface Water	0	0	0	
	Municipal Wastewater (MGD)			
NPDES (Point Source)	6.7	4.5	2.2	
LAS (Land Application)	0	0	0	

List of Individual Municipal Permits

Permit Holder	Permit Number	Permit Limit (MGD)	Source / Receiving Stream
	Existing Withdrawal Per	mits	
Waycross, City of	148-0001	2.6	Floridan Aquifer
Waycross, City of - Ware County Industrial Park	148-0004	3.0	Floridan Aquifer
Satilla Regional Water & Sewer Authority	148-0005	1.8	Floridan Aquifer
Existing Permitted Wastewater Facility			
Waycross (City of) WPCP	GA0020966	6.7	Satilla River

Ware County Municipal Wastewater Flow Forecast

