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Summary of Sustainable Yield Results in
Prioritized Aquifers

This synopsis document presents the results of an assessment of the availability of
groundwater resources in select prioritized aquifers of Georgia. The assessment work
was completed to support the development of Regional Water Development and
Conservation Plans (Regional Plans) as called for by the Georgia Comprehensive
State-wide Water Management Plan (Water Plan). This section presents a summary of
the results of the modeling effort. Subsequent sections of this synopsis provide
background information and more detail on the assessments of individual aquifers. A
report was also produced providing more detailed information on each modeling
effort, including model development, calibration, and sustainable yield analysis.

Figure S-1 presents the location of aquifers in the State of Georgia prioritized for
determination of sustainable yield (see Section 2.1 for definition of Sustainable Yield):

m Upper Floridan aquifer in the Dougherty Plain;
m Upper Floridan aquifer in south-central Georgia;

m Upper Floridan aquifer in south-central Georgia and the eastern Coastal Plain of
Georgia;

m Cretaceous aquifer between Macon, Georgia and Augusta, Georgia;
m Claiborne aquifer
m Paleozoic rock aquifers in the Northwestern Georgia Valley and Ridge System; and

m Crystalline Rock aquifers in the Piedmont and Blue Ridge Provinces (water budgets
only).

Sustainable yield modeling for the Upper Floridan aquifer in the Dougherty Plain of
southwestern Georgia was performed using the existing U.S. Geological Survey
(USGS) numerical model of the Dougherty Plain Upper Floridan aquifer. Sustainable
yield modeling for other prioritized aquifers in the Coastal Plain of Georgia (the
Upper Floridan aquifer in south-central Georgia and the eastern Coastal Plain of
Georgia, the Cretaceous aquifer, and the Claiborne aquifer) was performed using a
regional numerical model that included all of the aquifers. Sustainable yield modeling
for the Paleozoic rock aquifer was performed using a numerical model of a study
basin in northwestern Georgia. Sustainable yield of the crystalline rock aquifer was
determined using water budgets developed for basins in the Piedmont and Blue
Ridge provinces of Georgia.

Sustainable yields were determined using numerical model simulations with various
combinations of withdrawals from existing wells and, where applicable, from
hypothetical new wells. Results of the simulations therefore indicated a range of

March 2010 Georgia State-wide Water Management Plan
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Location of the High Prioritized Aquifers Selected for Study
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sustainable yield for each prioritized aquifer. Table S-1 presents the ranges of
sustainable yields of Coastal Plain and Paleozoic rock aquifers that were modeled
numerically. Table S-2 presents the range of sustainable yields of the crystalline rock
aquifer. Sustainable yields in Table S-2 are presented for the entire basin and are
normalized for the area of the basin.

The regional Coastal Plain model included estimated current withdrawals from the
portions of aquifers in Alabama, Florida, and South Carolina that were within the
regional model boundary. Sustainable yield simulations did not include increased
withdrawals from the portions of aquifers in Alabama, Florida, and South Carolina.
Withdrawals were increased only within the prioritized aquifers in Georgia to
determine sustainable yield ranges.

Baseline withdrawals were determined for some of the prioritized aquifers and are
presented in Tables S-1 and S-2. Baseline withdrawals were estimated on actual
current withdrawals, not permitted capacities. Municipal and industrial withdrawals
were obtained from data reported to Georgia EPD by permittees. Unpermitted
domestic and commercial withdrawals (estimated by the USGS to have been about 12
percent of total state-wide groundwater use during 2005) were estimated from USGS
data and county records. Agricultural withdrawals were estimated using a
combination of USGS and Georgia EPD data.

Sustainable yields for prioritized aquifers in the regional Coastal Plain model were
determined by zooming into the aquifer areas within the regional model boundary.
The modeling indicated that increasing withdrawals from one prioritized aquifer
would increase recharge from other aquifers. Therefore, the total range of sustainable
yield with simultaneous withdrawals from all prioritized aquifers was less than the
total range of sustainable yield with only individual aquifer withdrawals. Table S-1
presents the totals of sustainable yields of prioritized aquifers with withdrawals
modeled individually and simultaneously.

In addition to the above estimated ranges of sustainable yield, a number of other
observations can be drawn from this groundwater resources assessment:

m There are relatively large quantities of additional groundwater available above
existing withdrawals before the sustainable yields of prioritized aquifers in the
regional Coastal Plain model are reached (based on the selected sustainable yield
criteria of allowable groundwater drawdown from current conditions of 30 feet or
less and streamflow reductions from current conditions of 40 percent or less).

m There are smaller amounts of additional groundwater available from the Paleozoic-
rock aquifer in the northwestern Georgia study basin and from the crystalline-rock
aquifer in the Piedmont and Blue Ridge.

m A combination of increasing withdrawals from existing and hypothetical new wells
results in the highest range of sustainable yield in the Upper Floridan aquifer and
the Claiborne aquifer.

March 2010 Georgia State-wide Water Management Plan
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Table S-1
Sustainable Yield Estimates Using Numerical Models

Modeled Baseline
Sustainable Yield Groundwater
(mgd) Withdrawal

(mgd)

Aquifer

Minimum Maximum

Upper Floridan Aquifer in Dougherty Plain®

Upper Floridan Aquifer in South-Central Georgia

Upper Floridan Aquifer in South-Central Georgia &
Eastern Coastal Plain

Claiborne Aquifer

Cretaceous Aquifer

South-Central Georgia & Eastern Coastal
Plain Upper Floridan & Claiborne &
Cretaceous Aquifer Withdrawing Separately

South-Central Georgia & Eastern Coastal
Plain Upper Floridan & Claiborne &
Cretaceous Aquifer Withdrawing Together

Paleozoic-Rock Aquifer in Northwestern Georgia
Valley and Ridge

® October 1999 Baseline Withdrawal
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Table S-2
Sustainable Yield Estimates Using Water Budget Models

Current Basin
Groundwater Sustainable Yield*
Consumption (mgd)

(mgd)

Area Normalized Sustainable
Yield* (mgd/mi?)

Aquifer

Minimum Maximum Minimum Maximum

Crystalline Rock Aquifer in Piedmont

Crystalline Rock Aquifer in Blue Ridge

! Based on Mid-level (50%) Steamflow Reduction Category. See Section 3.2 for Details.
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m Increasing withdrawals from existing wells in the Cretaceous aquifer results in the
highest range of sustainable yield for this aquifer. The addition of hypothetical new
wells does not increase the range of sustainable yield of this aquifer.

m Because the total range of sustainable yield of prioritized aquifers in the regional
Coastal Plain model with simultaneous withdrawals from all prioritized aquifers
would be less than the total range with individual aquifer withdrawals, the
selection of which aquifers will be utilized for future water supply should be
evaluated when planning for use of the sustainable yield from an individual
aquifer.

m As withdrawals are increased, groundwater will initially come from storage until
steady state conditions are reached at a new equilibrium of recharge, withdrawals,
and natural discharges. Sources of recharge can include leakage from other aquifers
and geologic units, recharge from surface waters, and rainfall. Transient modeling
indicated that it may take up to 40 years of withdrawals within the ranges of
sustainable yields for aquifers to reach new equilibriums.

March 2010 Georgia State-wide Water Management Plan
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Section 1
Background

1.1 Purpose of Study

This groundwater modeling project was designed to accomplish the following:
m Compiling and reviewing available data on Georgia’s groundwater resources;
m Prioritizing aquifers and aquifer units (presented in Section 1.2);

m Developing calibrated groundwater flow models and other assessment tools for
estimating the sustainable yields in these prioritized units. A calibrated model
involves varying model input parameters to match field conditions, such as
available hydrogeologic data and groundwater monitoring well data; and

m Providing a range of aquifer sustainable yield estimates for the prioritized aquifers.

This synopsis provides a brief overview of the tools and methods applied, and
presents a range sustainable yield estimates for the aquifers prioritized for analysis in
this phase of the planning process.

1.2 Prioritized Aquifers in Georgia

A comprehensive accounting of the sustainable yield of all of the aquifers in Georgia
would have been extraordinarily expensive and time consuming. Therefore, Georgia
EPD prioritized aquifers for which a method for determining sustainable yields
would be developed, and for which a range of sustainable yield estimates would be
provided. Aquifers were prioritized based on the following criteria:

m Functional characteristics of the aquifer;

m Existing evidence of adverse effects due to withdrawals from the aquifer;

m Forecasts suggesting significant increases in demands placed on the aquifer; and
m Acceptability of impacts due to increased groundwater withdrawals.

Figure S-1 presents the locations of aquifers prioritized for the determination of
sustainable yield ranges. The aquifers include an example of each aquifer type found
in Georgia. Estimates of ranges of sustainable yield were made for portions of the
Upper Floridan aquifer, the Cretaceous aquifer, and the Claiborne aquifer in the
Coastal Plain of Georgia using calibrated numerical models; in the Paleozoic-rock
aquifers in northwestern Georgia using a qualitatively calibrated numerical model;
and in the crystalline-rock aquifers of the Piedmont and Blue Ridge physiographic
provinces using water budgets.

March 2010 Georgia State-wide Water Management Plan
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Section 2
Sustainable Yield Approach

2.1 Sustainable Yield Criteria

There have been many definitions over the years of “sustainable, safe, or perennial
yield” of an aquifer system. A reasonable and well accepted definition of
sustainability that seems to encompass most ideas was proposed in 1998 by a Task
Force of the American Society of Civil Engineers (ASCE, 1998). Their definition of
sustainability is as follows:

“Sustainable water resource systems are those designed and managed to fully contribute to the
objectives of society, now and in the future, while maintaining their ecological, environmental,
and hydrological integrity.”

For this phase of water resources planning, the focus on unwanted results and metrics
of unwanted results was on broader scale potential impacts resulting from the
withdrawal of groundwater. Impacts were primarily assessed on an annual basis,
with consideration for drought years. Only the limits of aquifer yield were explored,
with no comparison to projected water needs. An initial set of metrics to constrain
withdrawals to ranges of sustainable yields were developed based on broad scientific
principles and practical guidelines. These criteria included those that have been
applied in comparable circumstances elsewhere and were tested for their applicability
in Georgia. It is expected that these criteria will serve as guidelines to be addressed in
greater detail and possibly adjusted as the regional plans are developed and
stakeholder input is solicited.

The overarching concept to be evaluated is whether an increase in recharge, removal
of water stored in the system through larger groundwater withdrawals, or a decrease
in discharge causes unwanted results. The following metrics are applied, with
variations developed appropriate to each of the aquifers being studied and to the level
of detail provided by the models used to assess sustainable yield:

m Drawdowns of groundwater levels in the pumped aquifer do not exceed 30 feet
between pumping wells;

m Recharge from surface water sources were constrained to 40 percent of baseflow in
order to maintain opportunities for surface water use (modified to 10 percent of
baseflow in the Paleozoic rock aquifer and 40 percent of streamflow in the
crystalline rock aquifer);

m Reduction in aquifer storage does not go beyond a new base level;

m Groundwater levels are not lowered below the top of a confined aquifer; and

March 2010 Georgia State-wide Water Management Plan
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m The ability of the aquifer to recover to baseline groundwater levels between periods
of higher pumping during droughts is not exceeded.

2.1.1 Loss of Confined Head/Pressure (Drop of Water Levels
Between Pumping Wells)

A practical limit to avoid impacts to nearby wells is to restrict withdrawals such that
groundwater level drawdown in the pumped aquifer does not exceed 30 feet below
levels representative of current conditions between pumping wells. Limiting
drawdown between pumping wells to 30 feet could minimize effects of increased
withdrawals on other wells. It would also decrease the potential for creating sinkholes
in carbonate aquifers at or near the ground surface. Application of this metric would
require a definition of where 30 feet of drawdown is measured and locations of new
wells would need to consider where 30 feet of drawdown could occur. Assumptions
associated with the use of this metric are presented separately for each of the modeled
aquifers.

2.1.2 Changing an Aquifer from Confined to Unconfined
Conditions

Pumping was restricted in all areas to avoid drawing the water table down from
overlying aquifers and/or confining units such that portions of the confined aquifer
become unconfined (i.e., the potentiometric surface drops below the top surface of the
aquifer). Changing an aquifer from confined to unconfined conditions would decrease
the transmissivity of an aquifer and thereby decrease well yields from the aquifer.

2.1.3 Minimize Impacts to Streamflow

Lowering of the groundwater table usually results in a reduction in water flowing
from springs and in-stream baseflow (streamflow that is totally dependent on
groundwater discharge). Metrics were selected to constrain recharge from surface
water sources in order to maintain opportunities for surface water use. It should be
noted that baseflows used to constrain surface water recharge to groundwater were
baseflows generated by the model and not baseflows determined from stream
hydrographs.

At this level of water resources planning, there is a need for a sufficiently simple
method that can make use of readily available streamflow statistics. One practical
method is the Tennant Method (Tennant, 1976), which relies on percentages of mean
annual flow in order to recommend seasonally adjusted in-stream flows. The method
has become popular because it is an easy to apply standard that can be used with
limited and readily available data and is therefore practical for the level planning
being completed for the Water Plan. Because this is a groundwater assessment, the
Tennant Method was modified to focus the assessment on the period of lowest annual
baseflow as well as the lowest annual streamflow. A modified Tennant Method is
applied for most of these groundwater assessments in order to provide initial
guidance on limits to groundwater withdrawals. As applicable, modifications to the
Tennant Method are presented separately for each of the modeled aquifers.

March 2010 Georgia State-wide Water Management Plan
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2.2 Sustainability Measures by Modeling Approach

During this phase of the water resources planning process, the modeling approach
used to estimate the sustainable yield of an aquifer depended on the availability of
data and the level of detail required to answer basic questions about the potential
impacts of withdrawals on aquifers and groundwater use. Three modeling
approaches were piloted, ranging from a simple water budget to the development of
fully calibrated numerical models with transient simulation capabilities. Each
approach provides a different level of information, and thus a different approach to
providing initial estimates of the sustainable yield of the aquifer in question. The
exact metrics used to make a preliminary assessment of sustainability varied
according to the modeling approach and are presented in the following sections. In all
cases, the models were run until one of the sustainable yield metrics was reached and
then that level of withdrawals was determined to be part of the range of sustainable
yield.

March 2010 Georgia State-wide Water Management Plan
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Section 3

Piedmont and Blue Ridge Provinces:
Streamflow-Based Water Budgets

3.1 Modeling Approach

A water budget approach was selected as the most appropriate mechanism to provide
a planning level assessment of groundwater resource sustainability in basins of the
Piedmont and Blue Ridge physiographic provinces of Georgia. The selected basins for
the water budgets were:

m The Middle Oconee River Lower Basin, which covers 163 square miles in portions
of Clarke, Oconee, Barrow, and Jackson counties of the Piedmont; and

m The Chattahoochee River-Chickamauga Creek and Soque River basins, which cover
315 square miles in portions of Habersham, Towns, Union, and White counties of
the Blue Ridge.

The location of the Piedmont and Blue Ridge Watersheds are shown in Figure S-2.

A water budget is an accounting of water movement within the hydrologic cycle, both
natural and artificial. Water budgets can be completed at a basin or subbasin level,
although each approach may have unique limitations based on the quantity and
quality of data available to provide an assessment of the system. Water budgets serve
as useful tools for a number of reasons. In the context of assessing groundwater
resource sustainability, the process of collecting, compiling and analyzing the data
necessary to develop water budgets is useful for:

m Estimating groundwater withdrawal rates and recharge.
m Identifying the relationship between streamflow and baseflow.
m Identifying the areas served by domestic wells and onsite wastewater systems.

m Developing an understanding of the potential impacts that sanitary sewers have on
groundwater recharge.

m Developing an understanding of the movement and use of water within a drainage
basin.

m Developing a concise means of comparing drainage basins with each other in terms
of water consumption, baseflow, and runoff.

m Identifying drainage basins that have a relatively high level of water consumption.

m Comparing the natural versus man-made components of the hydrologic cycle.

March 2010 Georgia State-wide Water Management Plan
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m Identifying subbasins where large exports or imports of water are occurring.

m Identifying where management decisions will result in the most impact and
allowing the resource managers and planners to focus management efforts on the
most pressing issues.

m Providing a basis to assess sustainability of the water resource.

The full water budget accounts for both the natural and artificial movement of water
within the hydrologic cycle. The equation used in the assessment generally reflects
water “in” to the system:

m Average precipitation;
m Wastewater and industrial discharge to groundwater systems;

m Estimated domestic recharge from onsite wastewater treatment systems (i.e., septic
systems); and

m Discharge to streams.

and water “out” of the system:

m Evapotranspiration;

m Runoff component of precipitation;

m Surface water withdrawal from streams/ creeks;

m Groundwater withdrawal from public water supply systems, industrial,
commercial and agricultural wells;

m Estimated withdrawal from domestic wells; and
m Median baseflow of streams.

The components of the water budget equation which specifically relate to
groundwater can be rearranged to develop an estimate of net groundwater
consumption. Net groundwater consumption can thereby be defined as the estimated
withdrawal from all groundwater wells (public water supply systems, industrial,
commercial, domestic, and agricultural wells) minus the groundwater recharge from
wastewater treatment plants, onsite treatment systems and other sources including
industrial discharges to groundwater. By comparing net groundwater consumption to
the sustainable yield criteria discussed in Section 2 of this Synopsis, estimates of net
groundwater availability can be developed.

For shallow, water table aquifers in direct connection with surface water, water
budgets can be constructed using existing data on rainfall, streamflow, aquifer and
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surface water withdrawals, and aquifer and surface water discharges. These water
budgets are usually created on an annual basis due to limited information on the
withdrawals, and they rely on stream baseflow estimates to approximate the recharge
of the groundwater system. An underlying assumption of this method is that the
surface watershed and the groundwater basin cover the same area, making them
appropriate for unconfined, surficial aquifers.

Water budgets offer no ability to estimate impacts due to the locations of
groundwater withdrawals, nor do they account for possible “lag time” between
withdrawals and impacts to streams. Because the water budget focuses on streamflow
as the primary estimator of recharge and groundwater availability, the most practical
method is to apply a variant of the Tennant Method to make an initial estimate of
sustainable yield.

3.2 Estimated Range of Sustainable Yield

In the Piedmont and Blue Ridge area, the modified Tennant Method was used to
develop values for sustainable yield. Tennant suggests several categories of
streamflow reduction, and these are modified here into minimum, mid-level, and
maximum allowable streamflow reduction categories and are subtracted from the
mean monthly flow during the most severe stress period of the year (September).

Because of the limited ability of the Crystalline-Rock aquifers in the Piedmont and
Blue Ridge areas to provide water, an even more stringent or conservative estimate of
sustainable yield is also provided as the lower end of the range of sustainable yield. In
this case, the streamflow reduction targets are further reduced, allowing only 20% of
the difference between the mean September flow and the Tennant reduction category
thresholds to calculate groundwater availability. The Tennant Method was further
modified to provide an indication of sustainable yield considering only the baseflow
component of streamflow. In this way, an attempt is made to provide an upper limit
to groundwater withdrawals that will leave sufficient water in the stream during the
period of lowest flows to support opportunities for surface water withdrawals.

The increase of impermeable cover within a basin would result in a decrease in
recharge to groundwater and a subsequent decrease in stream base flow. The water
budgets developed for the Water Plan did not consider decreased stream base flows
resulting from future increases in impermeable cover. Because of the way stream base
flow was used as a metric in the water budgets to determine sustainable yields,
increases in impermeable cover and subsequent decreases in stream base flows would
result in lower sustainable yields.

Daily streamflow data from the period 1989 - 2008 for the Middle Oconee River
(Piedmont) and Chattahoochee River (Blue Ridge) were used to calculate the mean
annual streamflow and baseflow and a range of streamflow and baseflow reduction
amounts (40% to 60%) were evaluated. The 50% mid-level streamflow was chosen as
the criterion to estimate the net amount of groundwater available for use in both
basins. Using the 40% streamflow reduction amount (60% of flow remains in the
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stream) in the Piedmont basin resulted in a situation in which current consumption
already exceeded the sustainable yield. This was not considered reasonable given the
negative net groundwater consumption in the basin. Therefore a mid-level reduction
of 50% was used in both the Piedmont and Blue Ridge basins.

30Q2 (driest monthly flow with a recurrence interval of 2 years) and 7Q10 (driest
weekly flow with a recurrence interval of 10 years) values were also developed for
comparative purposes only. The resulting values are shown in Table S-3 for total
streamflow. The values shown under the label “Tennant Method Thresholds” are
simply the mean annual streamflow multiplied by the appropriate reduction factors.
The threshold values are given in several different units (cubic feet per second, inches
per year, million gallons per day, and million gallons per square mile) to provide
appropriate units for a variety of applications. The values in the columns labeled “Net
Amount Available for Use” show the net amount of groundwater consumption that
could occur on an average annual basis so that mean monthly streamflow does not
drop below the minimum flow reduction category during the month of September.

In Table S-3, the Net Amount Available for Use in the Piedmont has a lower range of
0 million gallons per day (mgd), meaning that based on the most conservative or
minimum allowable streamflow reduction estimate, the watershed is currently
consuming levels equal to or greater than the sustainable yield. If less conservative
criteria are applied, then additional groundwater is available.

Table S-3 also presents a more restrictive use of the Tennant Method similar to an
approach applied in the New Jersey Highlands to estimate sustainable yield. In this
case, the Tennant Method streamflow reduction categories are further reduced,
allowing only 20% of the difference between the mean September flow and the
Tennant threshold to calculate groundwater availability.

Table S-4 compares the net groundwater consumption values derived from the water
budgets to the groundwater sustainability measures calculated via the modified
Tennant Method using the mid-level (50%) streamflow reduction category.

m Column “a” is taken from the estimates found in Table S-3. In the Piedmont, the
water budget was completed for the Middle Oconee River Lower Basin, which is
only a portion (roughly 41%) of the larger drainage basin for which Tennant
Thresholds and the net amount available for use were calculated in Table S-3.
Therefore, the values were normalized to reflect the smaller basin size. In the upper
part of the table, the estimate uses the streamflow reduction percentage value from
the modified Tennant Method. In the lower part of the table, the estimate uses the
more restrictive estimate of sustainable yield based on only 20% of the value
provided in the upper part of the table. The intent is to provide a range of
sustainable yield estimates for consideration by the Regional Councils.

m Column “b” shows current groundwater use.

March 2010 Georgia State-wide Water Management Plan
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Table S-3
Groundwater Sustainability Measures for Study Basins in the Piedmont and Blue Ridge

Tennant Method Thresholds Net Amount Available For Use Measures of Low
Flow
Basin Area Minimum Mid-level Maximum Based on Mean
Upstream of Streamflow Streamflow Streamflow S Mgan Sept. Flow Minus
Station* (sq. Reduction Reduction Reduction Mean  Sept. Flow Minus Tennant
miles) Category Category Category Sl Tennant 2 Threshold X 7Q10 30Q2
(06XQua)  (05XQua) (04X Quy) Threshold 200"
Piedmont
Oconee River (by Athens) 398 cfs 488 293 244 195 274 0to 79 0to 15.8 20 119
USGS Station No. 2217500 in/yr 16.6 10.0 8.3 6.7 9.3 0to 2.7 0to 0.5 0.7 4.1
mgd 315 189 158 126 177 0to 50.9 0to 10.2 12.6 77
mgd/mi* 0.8 0.5 0.4 0.3 0.4 0to 0.13 0to 0.03 0.03 0.2
Blue Ridge
Chattahoochee River (by Cornelia) 315 cfs 740 444 370 296 524 80 to 228 16.0 to 45.6 132 298
USGS Station No. 2331600 in/yr 31.9 19.1 15.9 12.8 22.6 3.41t09.8 0.7t0 2.0 5.7 12.8
mgd 478 287 239 191 339 51.7to 147.4 10.3t0 29.5 85.3 193
mgd/mi? 15 0.9 0.8 0.6 11 0.16 to 0.47 0.03t0 0.1 0.27 0.6

* In the Piedmont, the study basin was not at the headwaters of the basin, therefore the flows (in cfs and mgd) do not match the flows shown in Table S-4. Table S-4 uses 40.95% of the flows shown here to account for the basin
size.

2 The net amount available for use (range) was calculated by subtracting the range of Streamflow Categories from the Mean September Flow.

% The net amount available for use (range) was calculated by subtracting the Streamflow Categories from the Mean September Flow, then multiplying by 0.20.



Synopsis Report
Groundwater Availability Study
Review Draft - March 2010

Table S-4
Comparison of Groundwater Sustainability Measures to Net Groundwater Consumption Using Tennant Thresholds

(@) (©) O (C)] (e)
Dry Year Conditions [c/a X 100] [a-c]

Net Amount

Available for Use Net Groundwater

Basin Basedlon Mean Groundwater Grou':(j\t/vater Consumption as a Grou:ivater
Sept FlowiMinus N Use X Percentage of Amount .
Tennant Threshold Consumption Available Available
Piedmont?
Middle Oconee River Lower Basin cfs 12.3 1.86 -0.74 0% 13.0
(163 sq. miles) infyr 1.0 0.16 -0.06 1.08
mgd 7.9 1.20 -0.48 8.4
mgd/mi? 0.049 0.007 -0.003 0.052
Blue Ridge
Chattahoochee River-Chickamauga cfs 154 3.71 1.28 0.9% 152.7
Creek and Soque River Basin infyr 6.6 0.16 0.06 6.58
(315 sq. miles) mgd 99.5 2.40 0.83 98.7
mgd/mi2 0.316 0.008 0.003 0.313
@ (©) (c) (d)
Dry Year Conditions [c/a X 100]
Net Amount
Available for Use
Based on Mean Net Groundwater
i Groundwater Net Consumption as a Net
Sept. Flovr\: erlmlsd Use Groundwater Percental sof Amount Groundwater
VR VIfEse Consumption gA Available
X 20%* Available
Piedmont?
Middle Oconee River Lower Basin cfs 25 1.86 -0.74 0% 3.2
(163 sq. miles) infyr 0.20 0.16 -0.06 0.26
mgd 1.6 1.20 -0.48 2.1
mgd/mi? 0.010 0.007 -0.003 0.013
Blue Ridge
Chattahoochee River-Chickamauga cfs 30.8 3.71 1.28 4.5% 29.5
Creek and Soque River Basin infyr 1.33 0.16 0.06 1.27
(315 sqg. miles) mgd 19.9 2.40 0.83 19.1
mgd/mi? 0.063 0.008 0.003 0.061

* Based on Mid-level (50%) Streamflow Reduction Category.

2 The Middle Oconee River Lower basin is 163 square miles, and is 40.95% of the larger 398 square mile basin upstream of the USGS Station where flow records were available (see Table
S-3). The flows shown in column a (in cfs and mgd ) were adjusted to reflect the smaller basin size (40.95% of total basin values), and therefore, do not match the flows shown in Table S-3;
however, the normalized flows (in in/yr and mgd/mi 2) are identical.
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m Column “c” shows net groundwater consumption (accounting for water used but
returned to the groundwater or stream).

m Column “d” gives the percentage of water available currently being consumed (if
negative, it is shown as 0%).

“_rm

m Column “e” provides an estimate of the amount of water available for future
consumption.

As previously noted, net groundwater consumption in the Piedmont basin was
negative, meaning that more water is estimated to be returning though onsite
wastewater treatment systems than is leaving through wells. Using the mid-level
(50%) streamflow reduction category presented in the upper part of Table S-4, the net
amount of groundwater available is estimated to be 7.9 mgd, which is over 6 times the
amount currently being used in the watershed. If the more restrictive method is used
(lower part of Table S-4), the net amount of groundwater available is estimated to be
1.6 mgd, which is 33% more than the amount currently being used in the watershed.
If only the baseflow component is considered and the mid-level (50%) Tennant
Threshold is calculated using baseflow, the net amount of groundwater available is
estimated to be 0.8 mgd, which is 0.5 mgd below the amount currently being used in
the watershed.

Net groundwater consumption in the Blue Ridge basin is positive, meaning that water
is being consumed within the watershed. Using the least restrictive measure
described above and presented in the upper part of the table, the net amount of
groundwater available is estimated to be 99.5 mgd, which is over 41 times the amount
currently being used in the watershed. If the more restrictive method is used (lower
part of Table S-4), the net amount of groundwater available is estimated to be 19.9
mgd, which is over 8 times the amount currently being used in the watershed. If only
the baseflow component is considered and the mid-level (50%) Tennant Threshold is
calculated using baseflow, the net amount of groundwater available is estimated to be
55.6 mgd, which is over 23 times the amount currently being used in the watershed.

The water budgets show that more groundwater is available from the crystalline rock
aquifer than is currently being withdrawn. It might be difficult to find sufficient
water-bearing fractures in the crystalline rock aquifer to develop the full range of
sustainable yield, however. Therefore, it is recommended that the lower-end of the
sustainable yield range be used for planning purposes.
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Section 4

Northwestern Georgia: Numerical
Groundwater Flow Model

4.1 Modeling Approach

A numerical model of confined and unconfined Paleozoic rock aquifers in
northwestern Georgia was developing using existing, available data on water levels
and aquifer heads (the elevation to which water will rise in a well), aquifer properties,
the spatial extents and folding of the aquifers, confining units, and the thickness of
each stratigraphic unit (geologic subdivisions in the rocks), as well as estimates of
average annual withdrawals and stream baseflow. The model was checked against
available groundwater head data and streamflows in a qualitative manner, but there
was generally insufficient data to develop a quantitatively calibrated model.

Model simulation results were compared against streamflow data and regional water
level elevation data to determine whether simulated results were generally
representative of observed field conditions. Transient (time variable) and steady state
(equilibrium) simulations were conducted during model development and for the
sustainable yield analysis. The area modeled covered several watersheds within the
Valley and Ridge physiographic province in Floyd, Polk, Bartow and Paulding
counties where the largest spatial extent of Knox Group outcrops. The study area is
shown in Figure S-3.

A transient model simulation based on 2007 data was conducted to represent drought
year conditions. Drought year conditions were used to assess sustainable yield. The
model was used to help assess the sustainability of proposed or hypothesized
groundwater withdrawals by simulating streamflow and drawdown impacts of the
withdrawals and comparing to selected sustainability metrics as described in Section
2 and below.

4.2 Estimated Range of Sustainable Yield

For the northwestern Georgia model, the following sustainable yield criteria were
used to estimate an upper and lower bound for sustainable yield of the Paleozoic rock
aquifer in the study basin:

m Restrict the reduction in total streamflow and spring flow due to additional
withdrawals to 10 percent of mean annual discharge. An upper bound yield can be
estimated by limiting the drought year baseflow reduction to 10 percent of mean
annual baseflow (higher withdrawals are possible because a greater decline in
streamflow is allowed). A lower bound yield can be estimated by limiting the
drought year baseflow reduction to 10 percent of drought year mean annual
baseflow (lower withdrawals are possible because a smaller decline in streamflow
is allowed). The allowable percentage reduction of 10 percent was set

March 2010 Georgia State-wide Water Management Plan
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conservatively low because allowing a higher percentage would not have
maintained opportunities for surface water use, and because the accuracy of the
qualitatively calibrated model is not known.

m Restrict the reduction in total streamflow in any single stream and single spring
due to additional withdrawals above current conditions to 15 percent of mean
annual discharge under a drought year scenario.

m Restrict water table declines due to additional withdrawals above current
conditions within the model area to less than 30 feet between pumping wells.

m Avoid drawing the water table down to within 10 feet of the top of a confined
aquifer to avoid creating unconfined aquifer conditions.

A baseline no pumping simulation was completed for comparison with the
simulations of hypothetical withdrawals. This was selected for the basis of
comparison for the sustainable yield analysis because the number of existing
pumping locations within the model area was generally small. Furthermore, the
existing wells were not uniformly distributed and tended to be clustered near streams
and rivers. Hypothetical groundwater withdrawals were simulated from uniformly
distributed wells that were added to the model. The simulated withdrawals were
divided evenly among the hypothetical wells and were held constant over time.

Figures S-4 and S-5 show hydrographs of simulated stream baseflow for the
pumping and no-pumping conditions over a period of one year for the entire study
area. According to the first sustainability metric, the drought year baseflow with
pumping (solid red line) should not fall below the no-pumping baseflow (solid blue
line) by more that 10 percent of mean annual baseflow (dashed blue line). This is
further described below for each hydrograph.

Figure S-4 shows the results of the one year drought condition transient simulation
for pumping at the upper limit of sustainable yield, estimated to be 70 mgd. There are
three lines on the upper graph:

m Simulated stream baseflow during a drought year without groundwater
withdrawals (solid blue line). Dry-year stream baseflow was simulated with no
groundwater withdrawals and plotted as cubic feet per second (CFS) versus the
day of the year.

m Drought year streamflow reduced by 10% of mean annual baseflow for a normal
year of precipitation (dashed blue line). Simulated dry-year baseflow minus 10% of
simulated average year baseflow was plotted as CFS versus the day of the year.

m Simulated stream baseflow with 70 mgd of pumping from the aquifer system (solid
red line). Baseflow with groundwater withdrawals was simulated to fall within the
envelope to determine the sustainable yield for an average year.
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Figure S-4
Total Simulated Baseflow Within Model Domain For No Pumping and 70 MGD Pumping Scenarios
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Figure S-5
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Figure S-5 shows the results of the one year dry condition transient simulation for
pumping at the lower limit of sustainable yield, estimated to be 27 mgd. There are
three lines on the lower graph:

m Simulated stream baseflow during a drought year without groundwater
withdrawals (solid blue line). Dry-year stream baseflow was simulated with no
groundwater withdrawals and plotted as cubic feet per second (CFS) versus the
day of the year.

m More conservative - drought year streamflow reduced by 10% of mean annual
baseflow for a drought year of precipitation (dashed blue line). Simulated dry-year
baseflow minus 10% of simulated dry-year baseflow was plotted as CFS versus the
day of the year.

m Simulated stream baseflow with 27 mgd of pumping from the aquifer system (solid
red line). Baseflow with groundwater withdrawals was simulated to fall within the
envelope to determine the sustainable yield for a dry year.

The fact that the simulated baseflow under pumping conditions (the red lines)
approaches the upper and lower bounds of the allowable reduction in streamflow (the
dashed blue lines) in the two graphs suggest that, based on the sustainable criteria
selected, the range of sustainable yield falls somewhere between 27 mgd and 70 mgd.
There is less baseflow and less groundwater recharge from surface water during a dry
year than an average year, leading to the lower range of the sustainable yield.

Two other criteria must also be met to remain below the sustainable yield threshold:

m Drought year baseflow for any individual spring or stream should not be reduced
by more than 15 percent of mean annual baseflow. Even at the maximum end of the
range of sustainable yield (70 mgd), all of the simulated individual sub-watershed
baseflows (used to represent spring flows in the model) declined by less than 15%.

m The water table decline (drawdown) due to withdrawals should not exceed 30 feet
except in the immediate vicinity of a pumping well. Simulated areas of water table
decline greater than 30 feet due to the evenly distributed 70 MGD withdrawals
were negligible, so this metric did not affect the sustainable yield assessment.

In all cases during the northwest Georgia model runs, the streamflow sustainable
yield metric was the only one encountered by the simulations.

In summary, model results indicate a range of sustainable yield of 27 to 70 MGD for
the model domain. As indicated by the range, assessments of sustainable yield
depend very significantly on the criteria selected. Sustainable yield will also depend
on other factors, particularly the actual location and timing of withdrawals.
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Section 5

Georgia Coastal Plain: Regional and Sub-
Regional Calibrated Groundwater Flow
Models

Where sufficient hydrogeologic data existed, a calibrated three-dimensional
groundwater flow model of the aquifer system was developed. A calibrated model
increases the confidence level of the sustainable yield estimate. Additionally, transient
flow capabilities would allow for the ability to change the magnitude and direction of
flow with time. With transient capabilities, the model can be used to assess the timing
of withdrawals as well as the spatial distribution of withdrawals. Numerical flow
models were developed for the Claiborne, Cretaceous, and Upper Floridan aquifers in
the Coastal Plain aquifer system in Georgia.

5.1 Dougherty Plain Modeling Approach

In order to provide a basis for estimating the sustainable yield in Upper Floridan
aquifer in the Dougherty Plain area, an existing United States Geological Survey
(USGS) Modular Finite Element (MODEFE) model of the Upper Floridan aquifer in this
area was used with no modifications. The model domain, along with Georgia,
Alabama, and Florida counties is shown by the dashed purple area in Figure S-1. The
Dougherty Plain area is located at the southwestern corner of Georgia and the model
extends slightly into Alabama and Florida. The model covers an area of
approximately 4,700 square miles. Two versions of the model were furnished by the
USGS: a transient model and a steady state model. The steady state model was chosen
for this analysis because it was determined to be sufficient for sustainable yield
evaluations.

The model was calibrated to conditions in October 1999, during which time the model
area was experiencing a drought. Because it was the month of lowest stream
baseflow, it was therefore a month of greatest constraint on the sustainable yield.
Groundwater withdrawals during months other than October, particularly those
during the agricultural irrigation season, would be higher than the October 1999
baseline and may in fact exceed the sustainable yield during the time of withdrawal.

During a review of the model documentation and the execution of several
preliminary test simulations, it was apparent that the critical sustainability metric in
the Dougherty Plain area was the potential impact to base flows of the river system.
Because there is a significant degree of connection between the Upper Floridan
aquifer and the rivers in this part of Georgia, excessive drawdown of the aquifer does
not appear to be a major concern because the rivers would recharge the aquifer under
increased withdrawal scenarios.
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There are a number of river systems within the model domain. Figure S-6 shows the
model domain with the associated tributary basins or hydrologic unit. Each
hydrologic unit is identified by a unique hydrologic unit code (HUC).

To assess sustainable yield, drought condition withdrawals were incrementally
increased in a specific hydrologic unit while keeping the withdrawals in the
remaining hydrologic units at the original rate. The withdrawal rate multiplier was
increased until a streamflow reduction metric was triggered. This process was
repeated for each hydrologic unit until unique multipliers were determined for each
hydrologic unit. Once all of these multipliers were determined, a series of simulations
followed in which the groundwater withdrawals were increased in all hydrologic
units by their unique multiplier. Due to the cumulative effect of withdrawals on
streamflow, it became necessary to lower the withdrawal multipliers until the
streamflow reduction metric was no longer violated. This then, represented an
estimate of the sustainable yield of the Upper Floridan aquifer in the Dougherty Plain.

5.2 Dougherty Plain Sustainable Yield Ranges

Table S-5 shows the multipliers when the groundwater withdrawal increases are
simulated concurrently. There are several river reaches in HUC 03130004, including
the Chattahoochee River, Sawhatchee, Kirkland, and Bryans. While it appears to be
technically possible to have a significant increase in the groundwater withdrawal
from the Chattahoochee River basin, this hydrologic unit straddles both the Alabama
and Florida state lines. Significant increases in groundwater withdrawals would cause
impacts in these adjacent states. Therefore, Table S-5 shows a sustainable yield range
that both includes and does not include additional withdrawals from this hydrologic
unit code.

The table lists the October 1999 baseline withdrawals and the revised withdrawals
providing a sustainable yield estimate. These cumulative increases in groundwater
withdrawals result in an overall increase in the withdrawal of between 80 mgd and
171 mgd over October 1999 baseline for the study area.

There are two hydrologic unit groups (03130009 - Ichawaynochaway Creek, and
03130008 - Lower Flint River, with minor portions of the upper and lower Ochlocknee
River) in which approximately 70 percent of the potential increase in groundwater
withdrawals originates. Thus, there is a significant amount of water available, but this
available water tends to be centrally located in the basin.

As discussed previously, the most significant metric was the reduction in baseflow to
the rivers; however, there is also a drawdown effect. To ensure that there were no
violations, the drawdown was calculated. Due to the lack of a significant confining
unit above the Upper Floridan aquifer, the drawdown due to increased withdrawals
is less than 5 feet and does not approach the 30 foot drawdown metric. In this case,
streamflow reduction controls the estimate of sustainable yield. Figure S-7 shows the
river reach that violated the baseflow metric used to determine sustainable yield
when simulating the increased withdrawals concurrently.
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Table S-5
Dougherty Plain Concurrent Groundwater Withdrawal Increase Factors

Baseline Revised Withdrawals without Revised Withdrawals with
October 1999 HUC 03130004 HUC 03130004
Withdrawals
(Qlele) Withdrawal Withdrawal
Multiplier Multiplier
P (mgd) P (mgd)
03130007 3.97 1.73 6.88 1.73 6.88
03130006
03110202 11.39 1.87 21.34 1.87 21.34
03110204
03130009 9.86 4.22 41.62 4.22 41.62
03130010 39.91 1.21 48.33 1.21 48.33
03130008
03120002 77.64 1.33 102.95 1.33 102.95
03120003
03130004 11.21 1.00 11.21 9.17 102.80
03130011 2.99 1.51 4,53 1.51 453
Totals 157 237 328
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In order to further examine the range of sustainable yield, an additional simulation
was performed using March 2001 data. March 2001 was the month that had the
highest river stages within the time range of the U.S.G.S transient model. Completing
sustainable yield runs using March 2001 data, therefore, allowing a comparison of
sustainable yield during times of low and high stream baseflow.

The original steady state model input parameters were replaced with those
parameters that represented the March 2001 period in the transient model.
Specifically, river stages, groundwater withdrawals, and recharge/leakage values
were replaced with March 2001 information. The sustainable yield simulations were
then rerun with March 2001 baseline withdrawals. Similar to the original simulation,
there were two general scenarios considered, pumping increases allowed in HUC
03130004, which causes some drawdown in Alabama and Florida, and pumping
increases not allowed in HUC 03130004. These scenarios resulted in an overall
sustainable yield range of 262 to 347 mgd, slightly higher than the October 1999
results of 237 to 328 mgd.

5.3 Coastal Plain Modeling Approach

Sustainable yields were determined for four prioritized Coastal Plain aquifers:

m The Upper Floridan aquifer in south-central Georgia;

m The Upper Floridan aquifer in the eastern Coastal Plain of Georgia;

m The Claiborne aquifer in southwestern Georgia; and

m The Cretaceous aquifer between Macon and Augusta.

The approach used to model the prioritized Coastal Plain aquifers was as follows:

m An existing regional USGS Coastal Plain Clastic aquifer System model was
modified and updated by incorporating available data and the existing
groundwater models in or adjacent to the project areas to better represent the
hydrogeologic conditions within the project area.

m A regional groundwater flow model was developed and calibrated to observed
groundwater elevations at monitor well locations. It was also calibrated using
available hydrogeologic data, groundwater monitoring well data, and existing
models under steady-state conditions to establish boundary conditions (elevations)
for the sub-regional models.

m Three sub-regional groundwater flow models for the prioritized aquifers were
developed by zooming into portions of the calibrated regional groundwater model.

m Models of the prioritized aquifers were calibrated to observed groundwater
elevations at monitor well locations under transient conditions that represented
average, high, and low rainfall years. The transient conditions consisted of 36
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monthly stress periods (January 2004 through December 2006) to represent an
average rainfall year (2004), a high average rainfall year (2005), and a low rainfall
year (2006). The benchmark condition was that heads should have achieved at least
90 percent of their pre-drought levels within four years.

m The calibrated model of each prioritized aquifer was used to simulate increased
groundwater withdrawals from the aquifer to determine the range of sustainable
yield for the individual aquifer.

m The calibrated regional model was used to simulate increased groundwater
withdrawals from all prioritized aquifers to determine the total range of sustainable
yield for simultaneous increased withdrawals from all of the prioritized aquifers.

The extents of the regional and prioritized aquifer models are shown on Figure S-8.

The general sustainable yield metrics presented in Section 2 were further refined to be
used for the Georgia Coastal Plain numerical models. To estimate a range of
sustainable yields using a calibrated numerical model, withdrawals were increased
over baseline withdrawals and the aquifers were allowed to fully adjust to the new
groundwater withdrawal regime. In other words, aquifers were allowed to reach a
new equilibrium at the higher withdrawals. Equilibrium was seen once the pattern of
annual variation in aquifer heads had stabilized. Model results for the time of year
when heads were at their lowest (usually in August or September) were compared to
the set of selected sustainable yield metrics.

Even if it is assumed that the sustainable yield is properly assessed and that the 30-
foot groundwater level drawdown metric at system equilibrium for the driest month
is the determining metric, this still does not mean a single sustainable yield number
can be calculated. The sustainable rate of aquifer withdrawal is sensitive to the
location and density of withdrawals. Withdrawals in a small area may result in a 30-
foot drawdown whereas the same withdrawals dispersed over a larger area will have
a lesser drawdown result. This means that sustainable yield must be assessed as a
range, and that the ultimate sustainable yield within that range will depend on the
pattern and density of withdrawals.

In the Coastal Plain, there are multiple aquifers underlying the region. Withdrawals
in one aquifer often cause groundwater level drawdown in underlying and overlying
aquifers. If withdrawals are allowed to increase in each of the aquifers within the
sustainable yield of that individual aquifer, the cumulative effect of simultaneous
withdrawals from multiple aquifers could result in drawdowns of more than 30 feet
more than 40 percent recharge from streamflow.

The regional model was run simultaneously increasing withdrawals from all
prioritized aquifers with withdrawals reduced until the metrics for drawdown and
recharge from streamflow were met across the multiple aquifers. This analysis
resulted in estimates of sustainable yield for increasing withdrawals in multiple
aquifers simultaneously.
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5.4 Sustainable Yield of South-Central Georgia and
Eastern Coastal Plain Upper Floridan Aquifer, Claiborne
Aquifer, and Cretaceous Aquifer

The sustainable yield in the Upper Floridan aquifer in south-central Georgia and the
eastern Coastal Plain were evaluated together. First, the sustainable yield of south-
central Georgia was evaluated by itself by increasing withdrawals from existing and
hypothetical new wells. Withdrawals from the Upper Floridan aquifer in the eastern
coastal plain were held at baseline levels. Then, withdrawals were increased in the
existing wells in the eastern Coastal Plain along with increasing withdrawals from
existing and hypothetical new wells in south-central Georgia. Unlike in south-central
Georgia, new wells were not considered in the Upper Floridan aquifer in the eastern
Coastal Plain when simulated withdrawals were increased because existing
withdrawals are low and there is widespread spatial coverage of existing wells. Two
scenarios were evaluated for withdrawal increases: one included all wells increasing
uniformly, and the other increased withdrawals only in areas where there are
relatively little withdrawals currently.

Table S-6 provides a summary of the results of sustainable yield modeling of the
individual prioritized aquifers. The table provides a range of increases in withdrawals
over current rates of withdrawals for each individual prioritized aquifer, assuming
that the other prioritized aquifers do not increase withdrawals above their current
levels. Section 5.5 provides the range of increases in withdrawals over current rates of
withdrawals for each individual prioritized aquifer, assuming that all of the other
prioritized aquifers simultaneously increase withdrawals above their current levels to
their sustainable yield rates.

5.4.1 Upper Floridan Aquifer in South-Central Georgia

As shown in Table S-6, the estimated baseline withdrawal rate from the Upper
Floridan aquifer in south-central Georgia was approximately 329 mgd. Uniformly
increased withdrawals from the existing wells in the Upper Floridan aquifer in south-
central Georgia represented the low end of the range of sustainable yield, whereas
non-uniformly increased withdrawals from the existing wells and hypothetical new
wells in the south-central Georgia Upper Floridan aquifer represents the high end of
the range of sustainable yield.

If withdrawals are uniformly increased from existing wells in the Upper Floridan
aquifer in south-central Georgia, the withdrawals can be increased from a baseline of
329 mgd to 622 mgd. This pumping scenario results in localized exceedance of the 30-
foot groundwater level drawdown metric and a corresponding baseflow reduction of
approximately 23 percent.

If withdrawals are non-uniformly increased (that is, only in areas where there are
relatively little withdrawals currently), total withdrawals could be increased further
in south-central Georgia toward 836 mgd, an upper bound for the range of
sustainable yield. Figure S-9 presents the range of sustainable yield for the Upper
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Table S-6
Summary of Sustainable Yield Estimates
for Withdrawals from Individual Prioritized Aquifers
in the Coastal Plain of Georgia

EEEEE Sustainable Yield of
: CHEIMEIE] Individual Aquifer
Aquifer Withdrawal
(mgd) (mgd)
Min 622
South-Central Georgia Upper Floridan Aquifer 329 Max 836
South-Central Georgia & Eastern Coastal Plain Upper Min 868
Floridan Aquifer 475 Max 982
Min 100
Claiborne Aquifer 67 Max 250
Min 198
Cretaceous Aquifer 124 Max 201
Min 1,166
Total for the Prioritized Aquifers 667 Max 1,433

! The increased withdrawals from the Upper Floridan Aquifer for the eastern coastal plain were evaluated in
combination with the south-central area of Georgia.
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Figure S-9
Groundwater Modeling for Upper Floridan Aquifer Sustainable Yield Assessment
in South Central Georgia
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Floridan aquifer in south-central Georgia. The results presented in this figure assume
that withdrawals in the aquifer are increased while holding withdrawals in the other
aquifers at existing estimated rates. Figures S-10a and S-10b are groundwater level
drawdown maps, showing where the drawdown metric of 30 feet was exceeded for
the minimum and maximum sustainable yield, respectively.

5.4.2 Upper Floridan Aquifer in South-Central and Eastern
Coastal Plain Georgia

Table S-6 provides sustainable yield estimates for withdrawal increases in south-
central Georgia and Eastern Coastal Plain Georgia occurring simultaneously.
Estimated baselines withdrawals in both areas were approximately 475 mgd. If
withdrawals are uniformly increased from existing wells in the Upper Floridan
aquifer in south-central Georgia and the eastern Coastal Plain, the withdrawals could
be increased from a baseline of 475 mgd to 868 mgd. This withdrawal scenario
resulted in a localized exceedance of the 30-foot groundwater level drawdown metric
and a corresponding baseflow reduction of approximately 23 percent.

If withdrawals are non-uniformly increased from existing wells in south-central
Georgia and the eastern Coastal Plain, total withdrawals could be increased further
toward 982 mgd, an upper bound for the range of sustainable yield. Note that there is
already a wide distribution of existing pumping wells in this area. Therefore, the
addition of new wells within this combined area did not result in the maximum
estimate of increased sustainable yield over the estimate of increased sustainable yield
for south-central Georgia by itself. Figure S-11 presents the range of sustainable yields
for the Upper Floridan aquifer in south-central Georgia and the eastern Coastal Plain
of Georgia. The results presented in this figure assume that withdrawals in the aquifer
are increased while holding withdrawals in the other aquifers at existing estimated
rates. Figures S-12a and S-12b are groundwater level drawdown maps, showing
where the drawdown metric of 30 feet was exceeded for the minimum and maximum
sustainable yield, respectively.

5.4.3 Claiborne Aquifer

The results of the groundwater modeling for the Claiborne aquifer sustainable yield
assessment are also summarized in Table S-6. The estimated baseline withdrawal rate
from the Claiborne aquifer in Georgia is approximately 67 mgd. If withdrawals are
uniformly increased from the existing wells in the Claiborne aquifer, the withdrawals
can be increased from a baseline of 67 mgd to 100 mgd. This pumping scenario results
in an exceedance of the 30-foot groundwater level drawdown metric and a
corresponding baseflow reduction of approximately 6 percent. If withdrawals are
non-uniformly increased from the existing wells, total pumping withdrawals can be
increased to 250 mgd. Figure S-13 presents the range of sustainable yield for the
Claiborne aquifer. The results presented in this figure assume that withdrawals in the
aquifer are increased while holding withdrawals in the other aquifers at existing
estimated rates. Figures S-14a and S-14b are groundwater level drawdown maps,
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Figure S-11
Groundwater Modeling for Upper Floridan Aquifer Sustainable Yield Assessment
in South Central Georgia and Eastern Coastal Plain
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Figure S-12a

Simulated Groundwater Level Drawdown in Upper Floridan Aquifer (Layer 2)

Increasing Existing Well Pumping in UF Aquifer in South Central GA and Eastern Coastal Plain (AQ= 507 mgd)
Using Sub-Regional Upper Floridan Aquifer Model
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Figure S-12b
Simulated Groundwater Level Drawdown in Upper Floridan Aquifer (Layer 2)
Due to Increasing Existing Well Pumping in UF Aquifer in South Central GA and Eastern Coastal Plain (AQ= 393 mgd)
Using Sub-Regional Upper Floridan Aquifer Model
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Figure S-13
Groundwater Modeling for Claiborne Aquifer Sustainable Yield Assessment
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Figure S-14a

Simulated Groundwater Level Drawdown in Claiborne Aquifer (Layer 3)

Due to Increasing Existing Well Pumping in Claiborne Aquifer (AQ= 33 mgd)
Using Sub-Regional Claiborne Aquifer Model
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Figure S-14b

Simulated Groundwater Level Drawdown in Claiborne Aquifer (Layer 3)

Due to Increasing Existing and Additional Well Pumping in Claiborne Aquifer (AQ= 183 mgd)
Using Sub-Regional Claiborne Aquifer Model
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showing where the drawdown metric of 30 feet was exceeded for the minimum and
maximum sustainable yield, respectively.

5.4.4 Cretaceous Aquifer

The results of the groundwater modeling for the Cretaceous aquifer sustainable yield
assessment are presented in Table S-6. As shown in the table, the estimated baseline
withdrawal rate from the Cretaceous aquifer is approximately 124 mgd, with 100 mgd
pumped from the Providence aquifer and 24 mgd pumped from the Eutaw-Midville
aquifer. If withdrawals are uniformly increased from the existing wells in the
Cretaceous aquifer, the withdrawals can be increased from a baseline of 124 mgd to
198 mgd. This withdrawal scenario results in exceedance of the 30-foot groundwater
level drawdown metric and a corresponding baseflow reduction of 39 percent. If
withdrawals are non-uniformly increased from the existing wells, total withdrawals
can be increased to 201 mgd. Figure S-15 presents the range of sustainable yield for
the Cretaceous aquifer between Macon and Augusta. The results presented in this
figure assume that withdrawals in the aquifer are increased while holding
withdrawals in the other aquifers at existing estimated rates. Figures S-16a and S-16b
are groundwater level drawdown maps for the Providence aquifer, showing where
the drawdown metric of 30 feet was exceeded for the minimum and maximum
sustainable yield, respectively. Figures S-17a and S-17b are groundwater level
drawdown maps for the Eutaw-Midville aquifer, showing where the drawdown
metric of 30 feet was exceeded for the minimum and maximum sustainable yield,
respectively.

5.5 Regional Model Combined Prioritized Aquifer
Sustainable Yield Adjustment

Increased withdrawals occur at the same time in more than one Coastal Plain aquifer.
Therefore, groundwater modeling simulations that increased withdrawals in all of the
prioritized aquifers were completed to assess the potential impact of combined
withdrawals on the overall range of sustainable yields.

Following the estimate of sustainable yield of each individual aquifer, the regional
groundwater model was used to assess the potential impact of withdrawal increases
in all the aquifers simultaneously. Table S-7 shows the ranges of sustainable yields of
individual prioritized aquifers with withdrawals increased in all prioritized aquifers
simultaneously. Uniformly increasing withdrawals from the existing wells in all the
prioritized aquifer represented the low end of the range of sustainable yields, whereas
non-uniformly increasing withdrawals from the existing wells in each prioritized
aquifer represents the high end of the range of sustainable yields. Figure S-18
presents the results if withdrawals are increased in all of these prioritized aquifers.
Figures S-19a through S-19e are groundwater level drawdown maps for each of the
regional model layers, showing where the drawdown metric of 30 feet was exceeded
for the minimum sustainable yield. Figures S-20a through S-20e provide the same
information for the maximum sustainable yield.

March 2010 Georgia State-wide Water Management Plan

S-45
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Figure S-15
Groundwater Modeling for Cretaceous Aquifer Sustainable Yield Assessment
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Simulated Groundwater Level Drawdown in Providence Aquifer (Layer 5)
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville Aquifer (AQ= 74 mgd)
Using Sub-Regional Cretaceous Aquifer Model
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Simulated Groundwater Level Drawdown in Providence Aquifer (Layer 5)

Due to Increasing Existing Well Pumping in Providence and Eutaw Midville Aquifer (AQ= 78 mgd)

Using Sub-Regional Cretaceous Aquifer Model
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Figure S-17a

Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer (Layer 6)

Due to Increasing Existing Well Pumping in Providence and Eutaw Midville Aquifer (AQ= 74 mgd)
Using Sub-Regional Cretaceous Aquifer Model
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Figure S-17b

Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer (Layer 6)
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville Aquifer (AQ= 78 mgd)

Using Sub-Regional Cretaceous Aquifer Model
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Table S-7
Summary of Sustainable Yield Estimates
for Simultaneous Withdrawals
from All of the Prioritized Aquifers in the Coastal Plain of Georgia

Baseline Simulated Groundwater
Groundwater Withdrawal Range from
Aquifer Withdrawal Prioritized Aquifers
(mgd) (mgd)
South-Central Georgia & Eastern Coastal Plain Upper Min 768
Floridan Aquifer* 475 Max 859
Min 100
Claiborne Aquifer 67 Max 183
Min 198
Cretaceous Aquifer 124 Max 187
Min 1,066
Total for the Prioritized Aquifers 667 Max 1,229

! The increased withdrawals from the Upper Floridan Aquifer for the eastern coastal plain were evaluated in combination
with the south-central area of Georgia.
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Figure S-18
Groundwater Modeling for Sustainable Yield Assessment of Upper Floridan
in South Central Georgia and Eastern Coastal Plain, Claiborne Aquifer, and Cretaceous Aquifer
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Figure S-19a

Simulated Groundwater Level Drawdown in Upper Floridan Aquifer (Layer 2)
Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 400 mgd)
Using Regional Georgia EPD Groundwater Model
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Figure S-19b

Simulated Groundwater Level Drawdown in Claiborne/Gordon Aquifer (Layer 3)
Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 400 mgd)
Using Regional Georgia EPD Groundwater Model
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Figure S-19e

Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer (Layer 6)
Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 400 mgd)
Using Regional Georgia EPD Groundwater Model
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Figure S-20a

Simulated Groundwater Level Drawdown in Upper Floridan Aquifer (Layer 2)
Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 563 mgd)

Using Regional Georgia EPD Groundwater Model
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Figure S-20d

Simulated Groundwater Level Drawdown in Providence Aquifer (Layer 5)

Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 563 mgd)
Using Regional Georgia EPD Groundwater Model
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Figure S-20e

Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer (Layer 6)
Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ= 563 mgd)
Using Regional Georgia EPD Groundwater Model



Review Draft
Synopsis of Groundwater Availability Assessment

Table S-8 presents the total sustainable yield of individual prioritized aquifers with
aquifer withdrawals modeled individually and simultaneously. The results of this
analysis show that if withdrawals in each prioritized aquifer are increased
simultaneously, the total sustainable yield of prioritized Coastal Plain aquifers is
lower than individual aquifers. When withdrawals are increased simultaneously in
each prioritized aquifer, there is hydraulic interference between well pumping on a
larger scale that limits the aquifer yield before exceeding sustainable yield metrics.

March 2010 Georgia State-wide Water Management Plan

S-63



Table S-8

Synopsis Report
Groundwater Availability Study
Review Draft - March 2010

Total Sustainable Yield of All Prioritized Coastal Plan Aquifers

Total of Sustainable Yields of Individual Prioritized Aquifers
with Aquifer Withdrawals Modeled Individually

Total of Sustainable Yields of Individual Prioritized Aquifers
with Aquifer Withdrawals Modeled Simultaneously

Min 1,166 mgd
Max 1,433 mgd
Min 1,066 mgd
Max 1,229 mgd




